ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.08648
  4. Cited By
Ensembling Low Precision Models for Binary Biomedical Image Segmentation

Ensembling Low Precision Models for Binary Biomedical Image Segmentation

16 October 2020
Tianyu Ma
Hang Zhang
Hanley Ong
Amar Vora
Thanh D. Nguyen
Ajay Gupta
Yi Wang
M. Sabuncu
    UQCV
ArXivPDFHTML

Papers citing "Ensembling Low Precision Models for Binary Biomedical Image Segmentation"

6 / 6 papers shown
Title
Volumetric landmark detection with a multi-scale shift equivariant
  neural network
Volumetric landmark detection with a multi-scale shift equivariant neural network
Tianyu Ma
Ajay Gupta
M. Sabuncu
3DPC
39
17
0
03 Mar 2020
RSANet: Recurrent Slice-wise Attention Network for Multiple Sclerosis
  Lesion Segmentation
RSANet: Recurrent Slice-wise Attention Network for Multiple Sclerosis Lesion Segmentation
Hang Zhang
Jinwei Zhang
Qihao Zhang
Jeremy Kim
Shun Zhang
S. Gauthier
P. Spincemaille
Thanh D. Nguyen
M. Sabuncu
Yi Wang
MedIm
33
25
0
27 Feb 2020
Multi-branch Convolutional Neural Network for Multiple Sclerosis Lesion
  Segmentation
Multi-branch Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation
S. Aslani
Michael Dayan
Stéphane Doncieux
Massimo Filippi
Vittorio Murino
Maria A Rocca
Diego Sona
43
145
0
07 Nov 2018
Fully Convolutional Network Ensembles for White Matter Hyperintensities
  Segmentation in MR Images
Fully Convolutional Network Ensembles for White Matter Hyperintensities Segmentation in MR Images
Hongwei Bran Li
Gongfa Jiang
Jianguo Zhang
Ruixuan Wang
Zhaolei Wang
Weishi Zheng
Bjoern Menze
59
193
0
14 Feb 2018
Improving automated multiple sclerosis lesion segmentation with a
  cascaded 3D convolutional neural network approach
Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach
Sergi Valverde
Mariano Cabezas
E. Roura
Sandra González-Villá
D. Pareto
J. Vilanova
L. Ramió-Torrentá
À. Rovira
A. Oliver
Xavier Llado
35
352
0
16 Feb 2017
Learning in an Uncertain World: Representing Ambiguity Through Multiple
  Hypotheses
Learning in an Uncertain World: Representing Ambiguity Through Multiple Hypotheses
Christian Rupprecht
Iro Laina
R. DiPietro
Maximilian Baust
Federico Tombari
Nassir Navab
Gregory D. Hager
52
184
0
01 Dec 2016
1