ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.07384
  4. Cited By
Human-interpretable model explainability on high-dimensional data

Human-interpretable model explainability on high-dimensional data

14 October 2020
Damien de Mijolla
Christopher Frye
M. Kunesch
J. Mansir
Ilya Feige
    FAtt
ArXivPDFHTML

Papers citing "Human-interpretable model explainability on high-dimensional data"

4 / 4 papers shown
Title
Latent SHAP: Toward Practical Human-Interpretable Explanations
Latent SHAP: Toward Practical Human-Interpretable Explanations
Ron Bitton
Alon Malach
Amiel Meiseles
Satoru Momiyama
Toshinori Araki
Jun Furukawa
Yuval Elovici
A. Shabtai
FAtt
11
4
0
27 Nov 2022
Combining Counterfactuals With Shapley Values To Explain Image Models
Combining Counterfactuals With Shapley Values To Explain Image Models
Aditya Lahiri
Kamran Alipour
Ehsan Adeli
Babak Salimi
FAtt
34
6
0
14 Jun 2022
Grouped Feature Importance and Combined Features Effect Plot
Grouped Feature Importance and Combined Features Effect Plot
Quay Au
J. Herbinger
Clemens Stachl
B. Bischl
Giuseppe Casalicchio
FAtt
45
44
0
23 Apr 2021
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
313
0
07 Feb 2020
1