Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.07243
Cited By
Deep Neural Network Training with Frank-Wolfe
14 October 2020
Sebastian Pokutta
Christoph Spiegel
Max Zimmer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Network Training with Frank-Wolfe"
24 / 24 papers shown
Title
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
Max Zimmer
Megi Andoni
Christoph Spiegel
Sebastian Pokutta
VLM
81
10
0
23 Dec 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
117
36
0
29 Apr 2023
Projection-Free Adaptive Gradients for Large-Scale Optimization
Cyrille W. Combettes
Christoph Spiegel
Sebastian Pokutta
ODL
49
11
0
29 Sep 2020
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
69
164
0
03 Jul 2020
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
Geoffrey Negiar
Gideon Dresdner
Alicia Y. Tsai
L. Ghaoui
Francesco Locatello
Robert M. Freund
Fabian Pedregosa
37
24
0
27 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
261
42,038
0
03 Dec 2019
Rigging the Lottery: Making All Tickets Winners
Utku Evci
Trevor Gale
Jacob Menick
Pablo Samuel Castro
Erich Elsen
136
592
0
25 Nov 2019
One Sample Stochastic Frank-Wolfe
Mingrui Zhang
Zebang Shen
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
57
58
0
10 Oct 2019
Momentum-Based Variance Reduction in Non-Convex SGD
Ashok Cutkosky
Francesco Orabona
ODL
67
402
0
24 May 2019
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
Aaron Defazio
Léon Bottou
UQCV
DRL
40
112
0
11 Dec 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
81
572
0
04 Jul 2018
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
44
113
0
24 Apr 2018
Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity
Lin Chen
Christopher Harshaw
Hamed Hassani
Amin Karbasi
39
76
0
22 Feb 2018
Learning Sparse Neural Networks through
L
0
L_0
L
0
Regularization
Christos Louizos
Max Welling
Diederik P. Kingma
236
1,136
0
04 Dec 2017
Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap
Aryan Mokhtari
S. Hassani
Amin Karbasi
36
72
0
05 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
168
8,807
0
25 Aug 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
48
1,023
0
23 May 2017
Conditional Accelerated Lazy Stochastic Gradient Descent
Guanghui Lan
Sebastian Pokutta
Yi Zhou
Daniel Zink
65
27
0
16 Mar 2017
Training Sparse Neural Networks
Suraj Srinivas
Akshayvarun Subramanya
R. Venkatesh Babu
90
207
0
21 Nov 2016
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
52
140
0
27 Jul 2016
Variance-Reduced and Projection-Free Stochastic Optimization
Elad Hazan
Haipeng Luo
43
165
0
05 Feb 2016
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
171
18,534
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
813
149,474
0
22 Dec 2014
Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application
Weiran Wang
M. A. Carreira-Perpiñán
58
287
0
06 Sep 2013
1