ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.06772
  4. Cited By
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks
  with Symmetric Splitting

Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting

14 October 2020
Adam D. Cobb
Brian Jalaian
    BDL
ArXivPDFHTML

Papers citing "Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting"

29 / 29 papers shown
Title
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
81
0
0
03 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
Peter Whalley
Neil K. Chada
Benedict Leimkuhler
BDL
67
4
0
14 Oct 2024
Gradient-free variational learning with conditional mixture networks
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
59
2
0
29 Aug 2024
CONFINE: Conformal Prediction for Interpretable Neural Networks
CONFINE: Conformal Prediction for Interpretable Neural Networks
Linhui Huang
S. Lala
N. Jha
154
2
0
01 Jun 2024
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference
  Methods for Deep Neural Networks
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
47
16
0
08 Jul 2020
Can Autonomous Vehicles Identify, Recover From, and Adapt to
  Distribution Shifts?
Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?
Angelos Filos
P. Tigas
R. McAllister
Nicholas Rhinehart
Sergey Levine
Y. Gal
35
185
0
26 Jun 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
54
314
0
15 Feb 2020
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
41
93
0
14 Oct 2019
Bayesian Inference for Large Scale Image Classification
Bayesian Inference for Large Scale Image Classification
Jonathan Heek
Nal Kalchbrenner
UQCV
BDL
91
33
0
09 Aug 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
56
144
0
17 Jul 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer
  Vision
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
BDL
53
298
0
04 Jun 2019
Ensemble Distribution Distillation
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
54
232
0
30 Apr 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
48
105
0
09 Mar 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
54
275
0
11 Feb 2019
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
90
1,043
0
18 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
61
1,088
0
28 Sep 2018
Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and
  Risk-sensitive Learning
Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi-Velez
Steffen Udluft
UQCV
PER
BDL
UD
46
27
0
19 Oct 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
127
8,807
0
25 Aug 2017
Self-Normalizing Neural Networks
Self-Normalizing Neural Networks
Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
209
2,496
0
08 Jun 2017
Deep Bayesian Active Learning with Image Data
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDL
UQCV
46
1,717
0
08 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
463
5,748
0
05 Dec 2016
An introduction to sampling via measure transport
An introduction to sampling via measure transport
Youssef Marzouk
Tarek A. El-Moselhy
M. Parno
Alessio Spantini
OT
59
89
0
16 Feb 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
439
9,233
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
102
1,878
0
20 May 2015
Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian
  Hierarchical Models
Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical Models
Yichuan Zhang
Charles Sutton
50
20
0
15 Jun 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
62
902
0
17 Feb 2014
Bayesian Active Learning for Classification and Preference Learning
Bayesian Active Learning for Classification and Preference Learning
N. Houlsby
Ferenc Huszár
Zoubin Ghahramani
M. Lengyel
58
901
0
24 Dec 2011
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
128
4,275
0
18 Nov 2011
Split Hamiltonian Monte Carlo
Split Hamiltonian Monte Carlo
Babak Shahbaba
Shiwei Lan
W. Johnson
Radford M. Neal
127
92
0
29 Jun 2011
1