ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.03593
  4. Cited By
Uncovering the Limits of Adversarial Training against Norm-Bounded
  Adversarial Examples

Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples

7 October 2020
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
    AAML
ArXivPDFHTML

Papers citing "Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples"

50 / 79 papers shown
Title
Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness
Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness
Emanuele Ballarin
A. Ansuini
Luca Bortolussi
AAML
98
0
0
20 Feb 2025
MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework
MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework
Ping Guo
Cheng Gong
Xi Lin
Fei Liu
Zhichao Lu
Qingfu Zhang
Zhenkun Wang
AAML
60
0
0
13 Jan 2025
Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks
Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks
Yong Xie
Weijie Zheng
Hanxun Huang
Guangnan Ye
Xingjun Ma
AAML
101
1
0
20 Nov 2024
Artificial Kuramoto Oscillatory Neurons
Artificial Kuramoto Oscillatory Neurons
Takeru Miyato
Sindy Löwe
Andreas Geiger
Max Welling
AI4CE
136
7
0
17 Oct 2024
Towards Universal Certified Robustness with Multi-Norm Training
Towards Universal Certified Robustness with Multi-Norm Training
Enyi Jiang
Gagandeep Singh
Gagandeep Singh
AAML
88
1
0
03 Oct 2024
ADBM: Adversarial diffusion bridge model for reliable adversarial purification
ADBM: Adversarial diffusion bridge model for reliable adversarial purification
Xiao-Li Li
Wenxuan Sun
Huanran Chen
Qiongxiu Li
Yining Liu
Yingzhe He
Jie Shi
Xiaolin Hu
AAML
99
10
0
01 Aug 2024
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Haoyang Liu
Aditya Singh
Yijiang Li
Haohan Wang
AAML
ViT
72
1
0
15 Mar 2024
Bag of Tricks for Adversarial Training
Bag of Tricks for Adversarial Training
Tianyu Pang
Xiao Yang
Yinpeng Dong
Hang Su
Jun Zhu
AAML
47
265
0
01 Oct 2020
Understanding and Improving Fast Adversarial Training
Understanding and Improving Fast Adversarial Training
Maksym Andriushchenko
Nicolas Flammarion
AAML
50
286
0
06 Jul 2020
Smooth Adversarial Training
Smooth Adversarial Training
Cihang Xie
Mingxing Tan
Boqing Gong
Alan Yuille
Quoc V. Le
OOD
54
152
0
25 Jun 2020
Adversarial Robustness on In- and Out-Distribution Improves
  Explainability
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
138
101
0
20 Mar 2020
Reliable evaluation of adversarial robustness with an ensemble of
  diverse parameter-free attacks
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
187
1,821
0
03 Mar 2020
Overfitting in adversarially robust deep learning
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
71
794
0
26 Feb 2020
Self-Adaptive Training: beyond Empirical Risk Minimization
Self-Adaptive Training: beyond Empirical Risk Minimization
Lang Huang
Chaoning Zhang
Hongyang R. Zhang
NoLa
41
202
0
24 Feb 2020
Boosting Adversarial Training with Hypersphere Embedding
Boosting Adversarial Training with Hypersphere Embedding
Tianyu Pang
Xiao Yang
Yinpeng Dong
Kun Xu
Jun Zhu
Hang Su
AAML
49
155
0
20 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
208
18,607
0
13 Feb 2020
Fast is better than free: Revisiting adversarial training
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
120
1,167
0
12 Jan 2020
AugMix: A Simple Data Processing Method to Improve Robustness and
  Uncertainty
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks
Norman Mu
E. D. Cubuk
Barret Zoph
Justin Gilmer
Balaji Lakshminarayanan
OOD
UQCV
88
1,293
0
05 Dec 2019
Towards Robust Image Classification Using Sequential Attention Models
Towards Robust Image Classification Using Sequential Attention Models
Daniel Zoran
Mike Chrzanowski
Po-Sen Huang
Sven Gowal
Alex Mott
Pushmeet Kohli
AAML
32
62
0
04 Dec 2019
Square Attack: a query-efficient black-box adversarial attack via random
  search
Square Attack: a query-efficient black-box adversarial attack via random search
Maksym Andriushchenko
Francesco Croce
Nicolas Flammarion
Matthias Hein
AAML
56
977
0
29 Nov 2019
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
  Transformer
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
260
19,824
0
23 Oct 2019
An Alternative Surrogate Loss for PGD-based Adversarial Testing
An Alternative Surrogate Loss for PGD-based Adversarial Testing
Sven Gowal
J. Uesato
Chongli Qin
Po-Sen Huang
Timothy A. Mann
Pushmeet Kohli
AAML
78
89
0
21 Oct 2019
Instance adaptive adversarial training: Improved accuracy tradeoffs in
  neural nets
Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets
Yogesh Balaji
Tom Goldstein
Judy Hoffman
AAML
154
103
0
17 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
183
3,458
0
30 Sep 2019
Defense Against Adversarial Attacks Using Feature Scattering-based
  Adversarial Training
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
57
230
0
24 Jul 2019
Adversarial Robustness through Local Linearization
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
56
307
0
04 Jul 2019
Towards Stable and Efficient Training of Verifiably Robust Neural
  Networks
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
51
346
0
14 Jun 2019
Intriguing properties of adversarial training at scale
Intriguing properties of adversarial training at scale
Cihang Xie
Alan Yuille
AAML
42
68
0
10 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed
  Classifiers
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
57
544
0
09 Jun 2019
Adversarially Robust Generalization Just Requires More Unlabeled Data
Adversarially Robust Generalization Just Requires More Unlabeled Data
Runtian Zhai
Tianle Cai
Di He
Chen Dan
Kun He
John E. Hopcroft
Liwei Wang
59
156
0
03 Jun 2019
Unlabeled Data Improves Adversarial Robustness
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
96
752
0
31 May 2019
Are Labels Required for Improving Adversarial Robustness?
Are Labels Required for Improving Adversarial Robustness?
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
52
333
0
31 May 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
87
17,950
0
28 May 2019
Robustness to Adversarial Perturbations in Learning from Incomplete Data
Robustness to Adversarial Perturbations in Learning from Incomplete Data
Amir Najafi
S. Maeda
Masanori Koyama
Takeru Miyato
OOD
62
130
0
24 May 2019
On Evaluating Adversarial Robustness
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
63
899
0
18 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
96
2,018
0
08 Feb 2019
Is AmI (Attacks Meet Interpretability) Robust to Adversarial Examples?
Is AmI (Attacks Meet Interpretability) Robust to Adversarial Examples?
Nicholas Carlini
SILM
37
35
0
06 Feb 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
62
726
0
28 Jan 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
57
436
0
25 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
94
2,525
0
24 Jan 2019
Feature Denoising for Improving Adversarial Robustness
Feature Denoising for Improving Adversarial Robustness
Cihang Xie
Yuxin Wu
Laurens van der Maaten
Alan Yuille
Kaiming He
76
907
0
09 Dec 2018
Robustness via curvature regularization, and vice versa
Robustness via curvature regularization, and vice versa
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
J. Uesato
P. Frossard
AAML
58
319
0
23 Nov 2018
On the Effectiveness of Interval Bound Propagation for Training
  Verifiably Robust Models
On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models
Sven Gowal
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
Chongli Qin
J. Uesato
Relja Arandjelović
Timothy A. Mann
Pushmeet Kohli
AAML
56
551
0
30 Oct 2018
Logit Pairing Methods Can Fool Gradient-Based Attacks
Logit Pairing Methods Can Fool Gradient-Based Attacks
Marius Mosbach
Maksym Andriushchenko
T. A. Trost
Matthias Hein
Dietrich Klakow
AAML
53
82
0
29 Oct 2018
Training for Faster Adversarial Robustness Verification via Inducing
  ReLU Stability
Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao
Vincent Tjeng
Nur Muhammad (Mahi) Shafiullah
Aleksander Madry
AAML
OOD
28
200
0
09 Sep 2018
Evaluating and Understanding the Robustness of Adversarial Logit Pairing
Evaluating and Understanding the Robustness of Adversarial Logit Pairing
Logan Engstrom
Andrew Ilyas
Anish Athalye
AAML
50
141
0
26 Jul 2018
Scaling provable adversarial defenses
Scaling provable adversarial defenses
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
57
447
0
31 May 2018
AutoAugment: Learning Augmentation Policies from Data
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
93
1,764
0
24 May 2018
Adversarially Robust Generalization Requires More Data
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
114
786
0
30 Apr 2018
Adversarial Logit Pairing
Adversarial Logit Pairing
Harini Kannan
Alexey Kurakin
Ian Goodfellow
AAML
70
627
0
16 Mar 2018
12
Next