ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.02432
  4. Cited By
A Panda? No, It's a Sloth: Slowdown Attacks on Adaptive Multi-Exit
  Neural Network Inference

A Panda? No, It's a Sloth: Slowdown Attacks on Adaptive Multi-Exit Neural Network Inference

6 October 2020
Sanghyun Hong
Yigitcan Kaya
Ionut-Vlad Modoranu
Tudor Dumitras
    AAML
ArXivPDFHTML

Papers citing "A Panda? No, It's a Sloth: Slowdown Attacks on Adaptive Multi-Exit Neural Network Inference"

39 / 39 papers shown
Title
Impact Analysis of Inference Time Attack of Perception Sensors on Autonomous Vehicles
Impact Analysis of Inference Time Attack of Perception Sensors on Autonomous Vehicles
Hanlin Chen
Simin Chen
Wenyu Li
Wei Yang
Yiheng Feng
AAML
273
0
0
05 May 2025
Poison-splat: Computation Cost Attack on 3D Gaussian Splatting
Poison-splat: Computation Cost Attack on 3D Gaussian Splatting
Jiahao Lu
Yifan Zhang
Qiuhong Shen
Xinchao Wang
Shuicheng Yan
3DGS
100
2
0
10 Oct 2024
Tiny Models are the Computational Saver for Large Models
Tiny Models are the Computational Saver for Large Models
Qingyuan Wang
B. Cardiff
Antoine Frappé
Benoît Larras
Deepu John
77
2
0
26 Mar 2024
BERT Loses Patience: Fast and Robust Inference with Early Exit
BERT Loses Patience: Fast and Robust Inference with Early Exit
Wangchunshu Zhou
Canwen Xu
Tao Ge
Julian McAuley
Ke Xu
Furu Wei
47
341
0
07 Jun 2020
DynaBERT: Dynamic BERT with Adaptive Width and Depth
DynaBERT: Dynamic BERT with Adaptive Width and Depth
Lu Hou
Zhiqi Huang
Lifeng Shang
Xin Jiang
Xiao Chen
Qun Liu
MQ
79
322
0
08 Apr 2020
Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by
  Enabling Input-Adaptive Inference
Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by Enabling Input-Adaptive Inference
Ting-Kuei Hu
Tianlong Chen
Haotao Wang
Zhangyang Wang
OOD
AAML
3DH
56
84
0
24 Feb 2020
Achieving Super-Linear Speedup across Multi-FPGA for Real-Time DNN
  Inference
Achieving Super-Linear Speedup across Multi-FPGA for Real-Time DNN Inference
Weiwen Jiang
E. Sha
Xinyi Zhang
Lei Yang
Qingfeng Zhuge
Yiyu Shi
Jiaxi Hu
55
75
0
21 Jul 2019
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
Yuzhe Yang
Guo Zhang
Dina Katabi
Zhi Xu
AAML
88
170
0
28 May 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
139
18,134
0
28 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
73
378
0
30 Apr 2019
Decoupling Direction and Norm for Efficient Gradient-Based L2
  Adversarial Attacks and Defenses
Decoupling Direction and Norm for Efficient Gradient-Based L2 Adversarial Attacks and Defenses
Jérôme Rony
L. G. Hafemann
Luiz Eduardo Soares de Oliveira
Ismail Ben Ayed
R. Sabourin
Eric Granger
AAML
54
298
0
23 Nov 2018
Edge Intelligence: On-Demand Deep Learning Model Co-Inference with
  Device-Edge Synergy
Edge Intelligence: On-Demand Deep Learning Model Co-Inference with Device-Edge Synergy
En Li
Zhi Zhou
Xu Chen
49
328
0
20 Jun 2018
Scalable Methods for 8-bit Training of Neural Networks
Scalable Methods for 8-bit Training of Neural Networks
Ron Banner
Itay Hubara
Elad Hoffer
Daniel Soudry
MQ
84
339
0
25 May 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
96
934
0
09 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
224
3,186
0
01 Feb 2018
Defense against Adversarial Attacks Using High-Level Representation
  Guided Denoiser
Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser
Fangzhou Liao
Ming Liang
Yinpeng Dong
Tianyu Pang
Xiaolin Hu
Jun Zhu
83
886
0
08 Dec 2017
SkipNet: Learning Dynamic Routing in Convolutional Networks
SkipNet: Learning Dynamic Routing in Convolutional Networks
Xin Wang
Feng Yu
Zi-Yi Dou
Trevor Darrell
Joseph E. Gonzalez
101
636
0
26 Nov 2017
PixelDefend: Leveraging Generative Models to Understand and Defend
  against Adversarial Examples
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
110
790
0
30 Oct 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial
  Examples
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
66
641
0
13 Sep 2017
BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks
BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks
Surat Teerapittayanon
Bradley McDanel
H. T. Kung
UQCV
97
1,140
0
06 Sep 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
307
12,069
0
19 Jun 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.1K
20,837
0
17 Apr 2017
The Space of Transferable Adversarial Examples
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
90
557
0
11 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural
  Networks
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
85
1,268
0
04 Apr 2017
Spatially Adaptive Computation Time for Residual Networks
Spatially Adaptive Computation Time for Residual Networks
Michael Figurnov
Maxwell D. Collins
Yukun Zhu
Li Zhang
Jonathan Huang
Dmitry Vetrov
Ruslan Salakhutdinov
68
348
0
07 Dec 2016
Delving into Transferable Adversarial Examples and Black-box Attacks
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
140
1,737
0
08 Nov 2016
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
472
3,144
0
04 Nov 2016
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
136
2,527
0
26 Oct 2016
Pruning Filters for Efficient ConvNets
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
193
3,696
0
31 Aug 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
264
8,552
0
16 Aug 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
75
3,677
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
107
3,962
0
24 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
257
8,842
0
01 Oct 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,066
0
20 Dec 2014
How transferable are features in deep neural networks?
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
231
8,336
0
06 Nov 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
465
43,658
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,386
0
04 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,927
1
21 Dec 2013
1