Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01179
Cited By
The Surprising Power of Graph Neural Networks with Random Node Initialization
2 October 2020
Ralph Abboud
.Ismail .Ilkan Ceylan
Martin Grohe
Thomas Lukasiewicz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Surprising Power of Graph Neural Networks with Random Node Initialization"
50 / 154 papers shown
Title
Uplifting Message Passing Neural Network with Graph Original Information
Xiao Liu
Lijun Zhang
Hui Guan
GNN
26
2
0
08 Oct 2022
Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs
Silvia Beddar-Wiesing
Giuseppe Alessio D’Inverno
C. Graziani
Veronica Lachi
Alice Moallemy-Oureh
F. Scarselli
J. M. Thomas
31
9
0
08 Oct 2022
Graph Neural Networks for Link Prediction with Subgraph Sketching
B. Chamberlain
S. Shirobokov
Emanuele Rossi
Fabrizio Frasca
Thomas Markovich
Nils Y. Hammerla
Michael M. Bronstein
Max Hansmire
54
78
0
30 Sep 2022
Provably expressive temporal graph networks
Amauri Souza
Diego Mesquita
Samuel Kaski
Vikas K. Garg
89
54
0
29 Sep 2022
One Model, Any CSP: Graph Neural Networks as Fast Global Search Heuristics for Constraint Satisfaction
Jan Tonshoff
Berke Kisin
Jakob Lindner
Martin Grohe
GNN
24
22
0
22 Aug 2022
A Topological characterisation of Weisfeiler-Leman equivalence classes
Jacob Bamberger
GNN
24
3
0
23 Jun 2022
Ordered Subgraph Aggregation Networks
Chao Qian
Gaurav Rattan
Floris Geerts
Christopher Morris
Mathias Niepert
46
57
0
22 Jun 2022
Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries
Fabrizio Frasca
Beatrice Bevilacqua
Michael M. Bronstein
Haggai Maron
43
125
0
22 Jun 2022
Agent-based Graph Neural Networks
Karolis Martinkus
Pál András Papp
Benedikt Schesch
Roger Wattenhofer
LLMAG
GNN
37
17
0
22 Jun 2022
Taxonomy of Benchmarks in Graph Representation Learning
Renming Liu
Semih Cantürk
Frederik Wenkel
Sarah McGuire
Devin Kreuzer
...
Michael Perlmutter
Bastian Alexander Rieck
M. Hirn
Guy Wolf
Ladislav Rampášek
OOD
26
14
0
15 Jun 2022
Universally Expressive Communication in Multi-Agent Reinforcement Learning
Matthew Morris
Thomas D. Barrett
Arnu Pretorius
24
4
0
14 Jun 2022
Empowering GNNs via Edge-Aware Weisfeiler-Leman Algorithm
Meng Liu
Haiyang Yu
Shuiwang Ji
38
1
0
04 Jun 2022
Shortest Path Networks for Graph Property Prediction
Ralph Abboud
Radoslav Dimitrov
.Ismail .Ilkan Ceylan
GNN
27
45
0
02 Jun 2022
Graph Neural Networks with Precomputed Node Features
Béni Egressy
Roger Wattenhofer
17
2
0
01 Jun 2022
Going Deeper into Permutation-Sensitive Graph Neural Networks
Zhongyu Huang
Yingheng Wang
Chaozhuo Li
Huiguang He
19
31
0
28 May 2022
How Powerful are K-hop Message Passing Graph Neural Networks
Jiarui Feng
Yixin Chen
Fuhai Li
Anindya Sarkar
Muhan Zhang
14
100
0
26 May 2022
How Powerful are Spectral Graph Neural Networks
Xiyuan Wang
Muhan Zhang
80
181
0
23 May 2022
Representation Power of Graph Neural Networks: Improved Expressivity via Algebraic Analysis
Charilaos I. Kanatsoulis
Alejandro Ribeiro
36
4
0
19 May 2022
Learning Generalized Policies Without Supervision Using GNNs
Simon Ståhlberg
Blai Bonet
Hector Geffner
OffRL
26
27
0
12 May 2022
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
33
68
0
16 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
50
40
0
25 Mar 2022
Twin Weisfeiler-Lehman: High Expressive GNNs for Graph Classification
Zhaohui Wang
Qi Cao
Huawei Shen
Bingbing Xu
Xueqi Cheng
28
2
0
22 Mar 2022
On the expressive power of message-passing neural networks as global feature map transformers
Floris Geerts
Jasper Steegmans
Jan Van den Bussche
17
6
0
17 Mar 2022
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang-Shu Liu
Di He
Tie-Yan Liu
AI4CE
45
65
0
09 Mar 2022
R-GCN: The R Could Stand for Random
Vic Degraeve
Gilles Vandewiele
F. Ongenae
Sofie Van Hoecke
GNN
29
13
0
04 Mar 2022
Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks
Hongya Wang
Haoteng Yin
Muhan Zhang
Pan Li
35
107
0
01 Mar 2022
An Empirical Study of Graphormer on Large-Scale Molecular Modeling Datasets
Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang-Shu Liu
Di He
Tie-Yan Liu
AI4CE
24
0
0
28 Feb 2022
1-WL Expressiveness Is (Almost) All You Need
Markus Zopf
19
11
0
21 Feb 2022
Weisfeiler and Leman Go Infinite: Spectral and Combinatorial Pre-Colorings
Or Feldman
A. Boyarski
Shai Feldman
D. Kogan
A. Mendelson
Chaim Baskin
40
14
0
31 Jan 2022
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
103
46
0
30 Jan 2022
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Alexander Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten M. Borgwardt
GNN
43
112
0
18 Dec 2021
Equivariant Quantum Graph Circuits
Péter Mernyei
K. Meichanetzidis
.Ismail .Ilkan Ceylan
42
8
0
10 Dec 2021
A systematic approach to random data augmentation on graph neural networks
Billy Joe Franks
Markus Anders
Marius Kloft
Pascal Schweitzer
OOD
AAML
11
0
0
08 Dec 2021
On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features
Emanuele Rossi
Henry Kenlay
Maria I. Gorinova
B. Chamberlain
Xiaowen Dong
M. Bronstein
34
87
0
23 Nov 2021
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
Pál András Papp
Karolis Martinkus
Lukas Faber
Roger Wattenhofer
GNN
28
138
0
11 Nov 2021
Nested Graph Neural Networks
Muhan Zhang
Pan Li
27
163
0
25 Oct 2021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
Leman Akoglu
Neil Shah
GNN
24
160
0
07 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
53
176
0
06 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
130
78
0
01 Oct 2021
Learning General Optimal Policies with Graph Neural Networks: Expressive Power, Transparency, and Limits
Simon Ståhlberg
Blai Bonet
Hector Geffner
41
48
0
21 Sep 2021
Graph Neural Networks for Graph Drawing
Matteo Tiezzi
Gabriele Ciravegna
Marco Gori
26
20
0
21 Sep 2021
On Positional and Structural Node Features for Graph Neural Networks on Non-attributed Graphs
Hejie Cui
Zijie Lu
Pan Li
Carl Yang
15
80
0
03 Jul 2021
On the approximation capability of GNNs in node classification/regression tasks
Giuseppe Alessio D’Inverno
Monica Bianchini
M. Sampoli
F. Scarselli
34
12
0
16 Jun 2021
Graph Neural Networks with Local Graph Parameters
Pablo Barceló
Floris Geerts
Juan L. Reutter
Maksimilian Ryschkov
24
65
0
12 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
21
121
0
08 Jun 2021
On the Universality of Graph Neural Networks on Large Random Graphs
Nicolas Keriven
A. Bietti
Samuel Vaiter
36
23
0
27 May 2021
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs
Christopher Morris
Matthias Fey
Nils M. Kriege
GNN
31
23
0
12 May 2021
The Logic of Graph Neural Networks
Martin Grohe
AI4CE
23
88
0
29 Apr 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
32
347
0
18 Feb 2021
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
84
28
0
17 Feb 2021
Previous
1
2
3
4
Next