Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01179
Cited By
The Surprising Power of Graph Neural Networks with Random Node Initialization
2 October 2020
Ralph Abboud
.Ismail .Ilkan Ceylan
Martin Grohe
Thomas Lukasiewicz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Surprising Power of Graph Neural Networks with Random Node Initialization"
50 / 154 papers shown
Title
Graph Representational Learning: When Does More Expressivity Hurt Generalization?
Sohir Maskey
Raffaele Paolino
Fabian Jogl
Gitta Kutyniok
Johannes F. Lutzeyer
22
0
0
16 May 2025
Repetition Makes Perfect: Recurrent Sum-GNNs Match Message Passing Limit
Eran Rosenbluth
Martin Grohe
26
1
0
01 May 2025
Improving Equivariant Networks with Probabilistic Symmetry Breaking
Hannah Lawrence
Vasco Portilheiro
Yan Zhang
Sékou-Oumar Kaba
47
3
0
27 Mar 2025
Graph Self-Supervised Learning with Learnable Structural and Positional Encodings
Asiri Wijesinghe
Hao Zhu
Piotr Koniusz
48
0
0
22 Feb 2025
Towards Invariance to Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
65
1
0
20 Feb 2025
Using Random Noise Equivariantly to Boost Graph Neural Networks Universally
Xuben Wang
Muhan Zhang
107
0
0
04 Feb 2025
Learning Efficient Positional Encodings with Graph Neural Networks
Charilaos I. Kanatsoulis
Evelyn Choi
Stephanie Jegelka
Jure Leskovec
Alejandro Ribeiro
64
1
0
03 Feb 2025
Balancing Efficiency and Expressiveness: Subgraph GNNs with Walk-Based Centrality
Joshua Southern
Yam Eitan
Guy Bar-Shalom
Michael M. Bronstein
Haggai Maron
Fabrizio Frasca
33
1
0
06 Jan 2025
LASE: Learned Adjacency Spectral Embeddings
Sofía Pérez Casulo
Marcelo Fiori
Federico Larroca
Gonzalo Mateos
AI4TS
GNN
38
0
0
23 Dec 2024
GNN Applied to Ego-nets for Friend Suggestions
Evgeny Zamyatin
GNN
85
0
0
16 Dec 2024
Towards Graph Foundation Models: A Study on the Generalization of Positional and Structural Encodings
Billy Joe Franks
Moshe Eliasof
Semih Cantürk
Guy Wolf
Carola-Bibiane Schönlieb
Sophie Fellenz
Marius Kloft
AI4CE
86
0
0
10 Dec 2024
Multigraph Message Passing with Bi-Directional Multi-Edge Aggregations
H. Çağrı Bilgi
Lydia Y. Chen
Kubilay Atasu
81
1
0
29 Nov 2024
On the Utilization of Unique Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
35
0
0
04 Nov 2024
Homomorphism Counts as Structural Encodings for Graph Learning
Linus Bao
Emily Jin
Michael M. Bronstein
.Ismail .Ilkan Ceylan
Matthias Lanzinger
30
1
0
24 Oct 2024
Enhancing GNNs with Architecture-Agnostic Graph Transformations: A Systematic Analysis
Zhifei Li
Gerrit Großmann
V. Wolf
29
0
0
11 Oct 2024
One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs
Krzysztof Olejniczak
Xingyue Huang
.Ismail .Ilkan Ceylan
Mikhail Galkin
GNN
54
0
0
21 Sep 2024
CliquePH: Higher-Order Information for Graph Neural Networks through Persistent Homology on Clique Graphs
Davide Buffelli
Farzin Soleymani
Bastian Alexander Rieck
GNN
20
0
0
12 Sep 2024
Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach
Tong Nie
Junlin He
Yuewen Mei
Guoyang Qin
Guilong Li
Jian Sun
Wei Ma
40
3
0
30 Aug 2024
A GREAT Architecture for Edge-Based Graph Problems Like TSP
Attila Lischka
Jiaming Wu
M. Chehreghani
Balázs Kulcsár
26
2
0
29 Aug 2024
Co-Neighbor Encoding Schema: A Light-cost Structure Encoding Method for Dynamic Link Prediction
Ke Cheng
Linzhi Peng
Junchen Ye
Leilei Sun
Bowen Du
39
4
0
30 Jul 2024
Scalable Graph Compressed Convolutions
Junshu Sun
Chen Yang
Shuhui Wang
Qingming Huang
GNN
48
0
0
26 Jul 2024
Numerical Literals in Link Prediction: A Critical Examination of Models and Datasets
Moritz Blum
Basil Ell
Hannes Ill
Philipp Cimiano
47
2
0
25 Jul 2024
Foundations and Frontiers of Graph Learning Theory
Yu Huang
Min Zhou
Menglin Yang
Zhen Wang
Muhan Zhang
Jie Wang
Hong Xie
Hao Wang
Defu Lian
Enhong Chen
AI4CE
GNN
55
2
0
03 Jul 2024
Revisiting Random Walks for Learning on Graphs
Jinwoo Kim
Olga Zaghen
Ayhan Suleymanzade
Youngmin Ryou
Seunghoon Hong
62
0
0
01 Jul 2024
Improving the Expressiveness of
K
K
K
-hop Message-Passing GNNs by Injecting Contextualized Substructure Information
Tianjun Yao
Yiongxu Wang
Kun Zhang
Shangsong Liang
38
11
0
27 Jun 2024
Link Prediction with Untrained Message Passing Layers
Lisi Qarkaxhija
Anatol E. Wegner
Ingo Scholtes
41
0
0
24 Jun 2024
Probabilistic Graph Rewiring via Virtual Nodes
Chendi Qian
Andrei Manolache
Christopher Morris
Mathias Niepert
AI4CE
38
3
0
27 May 2024
Distinguished In Uniform: Self Attention Vs. Virtual Nodes
Eran Rosenbluth
Jan Tonshoff
Martin Ritzert
Berke Kisin
Martin Grohe
26
12
0
20 May 2024
GRANOLA: Adaptive Normalization for Graph Neural Networks
Moshe Eliasof
Beatrice Bevilacqua
Carola-Bibiane Schönlieb
Haggai Maron
33
5
0
20 Apr 2024
Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph Representational Learning
Raffaele Paolino
Sohir Maskey
Pascal Welke
Gitta Kutyniok
33
2
0
20 Mar 2024
Iterative Graph Neural Network Enhancement via Frequent Subgraph Mining of Explanations
Harish Naik
Jan Polster
Raj Shekhar
Tamás L. Horváth
Gyorgy Turán
26
3
0
12 Mar 2024
Almost Surely Asymptotically Constant Graph Neural Networks
Sam Adam-Day
Michael Benedikt
.Ismail .Ilkan Ceylan
Ben Finkelshtein
GNN
71
2
0
06 Mar 2024
Graph Pruning for Enumeration of Minimal Unsatisfiable Subsets
Panagiotis Lymperopoulos
Liping Liu
38
0
0
19 Feb 2024
Homomorphism Counts for Graph Neural Networks: All About That Basis
Emily Jin
Michael M. Bronstein
.Ismail .Ilkan Ceylan
Matthias Lanzinger
26
11
0
13 Feb 2024
Message Detouring: A Simple Yet Effective Cycle Representation for Expressive Graph Learning
Ziquan Wei
Tingting Dan
Guorong Wu
43
0
0
12 Feb 2024
Weisfeiler-Leman at the margin: When more expressivity matters
Billy J. Franks
Christopher Morris
A. Velingker
Floris Geerts
58
10
0
12 Feb 2024
Feature Distribution on Graph Topology Mediates the Effect of Graph Convolution: Homophily Perspective
Soo Yong Lee
Sunwoo Kim
Fanchen Bu
Jaemin Yoo
Jiliang Tang
Kijung Shin
48
6
0
07 Feb 2024
Weisfeiler Leman for Euclidean Equivariant Machine Learning
Snir Hordan
Tal Amir
Nadav Dym
44
5
0
04 Feb 2024
Future Directions in the Theory of Graph Machine Learning
Christopher Morris
Fabrizio Frasca
Nadav Dym
Haggai Maron
.Ismail .Ilkan Ceylan
Ron Levie
Derek Lim
Michael M. Bronstein
Martin Grohe
Stefanie Jegelka
AI4CE
32
5
0
03 Feb 2024
PF-GNN: Differentiable particle filtering based approximation of universal graph representations
Mohammed Haroon Dupty
Yanfei Dong
W. Lee
26
13
0
31 Jan 2024
On the Expressive Power of Graph Neural Networks
Ashwin Nalwade
Kelly Marshall
Axel Eladi
Umang Sharma
19
0
0
03 Jan 2024
Learning Domain-Independent Heuristics for Grounded and Lifted Planning
Dillon Z. Chen
Sylvie Thiébaux
Felipe W. Trevizan
AI4CE
34
15
0
18 Dec 2023
Improving Subgraph-GNNs via Edge-Level Ego-Network Encodings
Nurudin Alvarez-Gonzalez
Andreas Kaltenbrunner
Vicencc Gómez
19
2
0
10 Dec 2023
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Derek Lim
Joshua Robinson
Stefanie Jegelka
Haggai Maron
73
16
0
04 Dec 2023
Variational Annealing on Graphs for Combinatorial Optimization
Sebastian Sanokowski
Wilhelm Berghammer
Sepp Hochreiter
Sebastian Lehner
56
13
0
23 Nov 2023
Efficient Subgraph GNNs by Learning Effective Selection Policies
Beatrice Bevilacqua
Moshe Eliasof
E. Meirom
Bruno Ribeiro
Haggai Maron
20
13
0
30 Oct 2023
Facilitating Graph Neural Networks with Random Walk on Simplicial Complexes
Cai Zhou
Xiyuan Wang
Muhan Zhang
38
15
0
30 Oct 2023
MAG-GNN: Reinforcement Learning Boosted Graph Neural Network
Lecheng Kong
Jiarui Feng
Hao Liu
Dacheng Tao
Yixin Chen
Muhan Zhang
AI4CE
35
11
0
29 Oct 2023
Laplacian Canonization: A Minimalist Approach to Sign and Basis Invariant Spectral Embedding
Jiangyan Ma
Yifei Wang
Yisen Wang
36
13
0
28 Oct 2023
Random Entity Quantization for Parameter-Efficient Compositional Knowledge Graph Representation
Jiaang Li
Quan Wang
Yi Liu
L. Zhang
Zhendong Mao
29
0
0
24 Oct 2023
1
2
3
4
Next