ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01118
  4. Cited By
Gaussian Process Molecule Property Prediction with FlowMO

Gaussian Process Molecule Property Prediction with FlowMO

2 October 2020
Henry B. Moss
Ryan-Rhys Griffiths
ArXivPDFHTML

Papers citing "Gaussian Process Molecule Property Prediction with FlowMO"

16 / 16 papers shown
Title
Ranking over Regression for Bayesian Optimization and Molecule Selection
Ranking over Regression for Bayesian Optimization and Molecule Selection
Gary Tom
Stanley Lo
Samantha Corapi
Alán Aspuru-Guzik
Benjamín Sánchez-Lengeling
BDL
41
0
0
11 Oct 2024
Be aware of overfitting by hyperparameter optimization!
Be aware of overfitting by hyperparameter optimization!
Igor V. Tetko
R. V. Deursen
Guillaume Godin
AI4CE
34
8
0
30 Jul 2024
A Gaussian Process Model for Ordinal Data with Applications to
  Chemoinformatics
A Gaussian Process Model for Ordinal Data with Applications to Chemoinformatics
Arron Gosnell
Evangelos A. Evangelou
27
0
0
16 May 2024
GFlowNets for AI-Driven Scientific Discovery
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
34
45
0
01 Feb 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
32
24
0
24 Jan 2023
GAUCHE: A Library for Gaussian Processes in Chemistry
GAUCHE: A Library for Gaussian Processes in Chemistry
Ryan-Rhys Griffiths
Leo Klarner
Henry B. Moss
Aditya Ravuri
Sang T. Truong
...
A. Lee
Bingqing Cheng
Alán Aspuru-Guzik
P. Schwaller
Jian Tang
GP
27
40
0
06 Dec 2022
Calibration and generalizability of probabilistic models on low-data
  chemical datasets with DIONYSUS
Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUS
Gary Tom
Riley J. Hickman
Aniket N. Zinzuwadia
A. Mohajeri
Benjamín Sánchez-Lengeling
A. Aspuru‐Guzik
21
16
0
03 Dec 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization
  over Combinatorial Spaces
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces
Aryan Deshwal
J. Doppa
BDL
32
42
0
01 Nov 2021
High-Dimensional Bayesian Optimisation with Variational Autoencoders and
  Deep Metric Learning
High-Dimensional Bayesian Optimisation with Variational Autoencoders and Deep Metric Learning
Antoine Grosnit
Rasul Tutunov
A. Maraval
Ryan-Rhys Griffiths
Alexander I. Cowen-Rivers
...
Wenlong Lyu
Zhitang Chen
Jun Wang
Jan Peters
Haitham Bou-Ammar
BDL
DRL
22
59
0
07 Jun 2021
Assigning Confidence to Molecular Property Prediction
Assigning Confidence to Molecular Property Prediction
AkshatKumar Nigam
R. Pollice
Matthew F. D. Hurley
Riley J. Hickman
Matteo Aldeghi
Naruki Yoshikawa
Seyone Chithrananda
Vincent A. Voelz
Alán Aspuru-Guzik
AI4CE
18
46
0
23 Feb 2021
GIBBON: General-purpose Information-Based Bayesian OptimisatioN
GIBBON: General-purpose Information-Based Bayesian OptimisatioN
Henry B. Moss
David S. Leslie
Javier I. González
Paul Rayson
21
43
0
05 Feb 2021
Are we Forgetting about Compositional Optimisers in Bayesian
  Optimisation?
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
19
13
0
15 Dec 2020
Data-Driven Discovery of Molecular Photoswitches with Multioutput Gaussian Processes
Ryan-Rhys Griffiths
Jake L. Greenfield
Aditya R. Thawani
Arian R. Jamasb
Henry B. Moss
Anthony Bourached
Penelope Jones
William McCorkindale
Alexander A. Aldrick
Matthew J. Fuchter Alpha A. Lee
25
13
0
28 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
8
34
0
09 Jun 2020
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic
  Bayesian Optimisation
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation
Ryan-Rhys Griffiths
Alexander A. Aldrick
Miguel García-Ortegón
Vidhi R. Lalchand
A. Lee
31
35
0
17 Oct 2019
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
184
1,778
0
02 Mar 2017
1