Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.00892
Cited By
Variance-Reduced Methods for Machine Learning
2 October 2020
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variance-Reduced Methods for Machine Learning"
9 / 59 papers shown
Title
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
61
18
0
18 Feb 2021
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
Bokun Wang
D. Kovalev
Peter Richtárik
100
15
0
16 Feb 2021
Stochastic Variance Reduction for Variational Inequality Methods
Ahmet Alacaoglu
Yura Malitsky
103
71
0
16 Feb 2021
Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization
M. Safaryan
Filip Hanzely
Peter Richtárik
42
24
0
14 Feb 2021
Query Complexity of Least Absolute Deviation Regression via Robust Uniform Convergence
Xue Chen
Michal Derezinski
59
31
0
03 Feb 2021
Delayed Projection Techniques for Linearly Constrained Problems: Convergence Rates, Acceleration, and Applications
Xiang Li
Zhihua Zhang
53
4
0
05 Jan 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
83
26
0
04 Jan 2021
Improved SVRG for quadratic functions
N. Kahalé
40
0
0
01 Jun 2020
Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms
Adil Salim
Laurent Condat
Konstantin Mishchenko
Peter Richtárik
64
23
0
03 Apr 2020
Previous
1
2