ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.13472
  4. Cited By
Targeted VAE: Variational and Targeted Learning for Causal Inference

Targeted VAE: Variational and Targeted Learning for Causal Inference

28 September 2020
M. Vowels
Necati Cihan Camgöz
Richard Bowden
    BDL
    OOD
    CML
ArXivPDFHTML

Papers citing "Targeted VAE: Variational and Targeted Learning for Causal Inference"

28 / 28 papers shown
Title
Deep Multi-Modal Structural Equations For Causal Effect Estimation With
  Unstructured Proxies
Deep Multi-Modal Structural Equations For Causal Effect Estimation With Unstructured Proxies
Shachi Deshpande
Kaiwen Wang
Dhruv Sreenivas
Zheng Li
Volodymyr Kuleshov
CML
SyDa
57
11
0
18 Mar 2022
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
89
300
0
03 Mar 2021
Intact-VAE: Estimating Treatment Effects under Unobserved Confounding
Intact-VAE: Estimating Treatment Effects under Unobserved Confounding
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
47
13
0
17 Jan 2021
Identifying Causal-Effect Inference Failure with Uncertainty-Aware
  Models
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models
Andrew Jesson
Sören Mindermann
Uri Shalit
Y. Gal
CML
45
74
0
01 Jul 2020
Amortized Causal Discovery: Learning to Infer Causal Graphs from
  Time-Series Data
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data
Sindy Löwe
David Madras
R. Zemel
Max Welling
CML
BDL
AI4TS
90
131
0
18 Jun 2020
MultiMBNN: Matched and Balanced Causal Inference with Neural Networks
MultiMBNN: Matched and Balanced Causal Inference with Neural Networks
Ankit Sharma
Garima Gupta
Ranjitha Prasad
Arnab Chatterjee
Lovekesh Vig
Gautam M. Shroff
CML
31
7
0
28 Apr 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
303
10,591
0
17 Feb 2020
A Survey on Causal Inference
A Survey on Causal Inference
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
71
506
0
05 Feb 2020
Treatment effect estimation with disentangled latent factors
Treatment effect estimation with disentangled latent factors
Weijia Zhang
Lin Liu
Jiuyong Li
CML
43
89
0
29 Jan 2020
Reducing Selection Bias in Counterfactual Reasoning for Individual
  Treatment Effects Estimation
Reducing Selection Bias in Counterfactual Reasoning for Individual Treatment Effects Estimation
Zichen Zhang
Qingfeng Lan
Lei Ding
Yue Wang
Negar Hassanpour
Russell Greiner
BDL
CML
49
9
0
19 Dec 2019
Demystifying Inter-Class Disentanglement
Demystifying Inter-Class Disentanglement
Aviv Gabbay
Yedid Hoshen
DRL
36
56
0
27 Jun 2019
Learning Individual Causal Effects from Networked Observational Data
Learning Individual Causal Effects from Networked Observational Data
Ruocheng Guo
Wenlin Yao
Huan Liu
CML
OOD
39
98
0
08 Jun 2019
Adapting Neural Networks for the Estimation of Treatment Effects
Adapting Neural Networks for the Estimation of Treatment Effects
Claudia Shi
David M. Blei
Victor Veitch
CML
123
373
0
05 Jun 2019
Machine learning in policy evaluation: new tools for causal inference
Machine learning in policy evaluation: new tools for causal inference
N. Kreif
K. DiazOrdaz
ELM
CML
56
46
0
01 Mar 2019
On Multi-Cause Causal Inference with Unobserved Confounding:
  Counterexamples, Impossibility, and Alternatives
On Multi-Cause Causal Inference with Unobserved Confounding: Counterexamples, Impossibility, and Alternatives
Alexander DÁmour
CML
99
41
0
27 Feb 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
111
1,466
0
29 Nov 2018
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
127
1,050
0
18 Oct 2018
Perfect Match: A Simple Method for Learning Representations For
  Counterfactual Inference With Neural Networks
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks
Patrick Schwab
Lorenz Linhardt
W. Karlen
CML
BDL
45
111
0
01 Oct 2018
Invariant Representations without Adversarial Training
Invariant Representations without Adversarial Training
Daniel Moyer
Shuyang Gao
Rob Brekelmans
Greg Ver Steeg
Aram Galstyan
OOD
51
210
0
24 May 2018
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
173
742
0
24 May 2017
Double/Debiased/Neyman Machine Learning of Treatment Effects
Double/Debiased/Neyman Machine Learning of Treatment Effects
Victor Chernozhukov
Denis Chetverikov
Mert Demirer
E. Duflo
Christian B. Hansen
Whitney Newey
CML
FedML
118
351
0
30 Jan 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
98
1,714
0
01 Dec 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
227
4,778
0
04 Jan 2016
Recursive Partitioning for Heterogeneous Causal Effects
Recursive Partitioning for Heterogeneous Causal Effects
Susan Athey
Guido Imbens
CML
162
1,428
0
05 Apr 2015
Deep Learning and the Information Bottleneck Principle
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
161
1,580
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
Counterfactual Reasoning and Learning Systems
Counterfactual Reasoning and Learning Systems
Léon Bottou
J. Peters
J. Q. Candela
Denis Xavier Charles
D. M. Chickering
Elon Portugaly
Dipankar Ray
Patrice Y. Simard
Edward Snelson
CML
OffRL
288
783
0
11 Sep 2012
Identifiability of parameters in latent structure models with many
  observed variables
Identifiability of parameters in latent structure models with many observed variables
E. Allman
C. Matias
J. Rhodes
CML
151
533
0
29 Sep 2008
1