Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.07494
Cited By
Are Interpretations Fairly Evaluated? A Definition Driven Pipeline for Post-Hoc Interpretability
16 September 2020
Ninghao Liu
Yunsong Meng
Xia Hu
Tie Wang
Bo Long
XAI
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Are Interpretations Fairly Evaluated? A Definition Driven Pipeline for Post-Hoc Interpretability"
33 / 33 papers shown
Title
Towards Faithfully Interpretable NLP Systems: How should we define and evaluate faithfulness?
Alon Jacovi
Yoav Goldberg
XAI
119
597
0
07 Apr 2020
The POLAR Framework: Polar Opposites Enable Interpretability of Pre-Trained Word Embeddings
Binny Mathew
Sandipan Sikdar
Florian Lemmerich
M. Strohmaier
39
36
0
27 Jan 2020
AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models
Eric Wallace
Jens Tuyls
Junlin Wang
Sanjay Subramanian
Matt Gardner
Sameer Singh
MILM
63
138
0
19 Sep 2019
Attention is not not Explanation
Sarah Wiegreffe
Yuval Pinter
XAI
AAML
FAtt
120
909
0
13 Aug 2019
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
57
67
0
16 Jul 2019
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
81
332
0
19 Jun 2019
Is Attention Interpretable?
Sofia Serrano
Noah A. Smith
108
684
0
09 Jun 2019
Attention is not Explanation
Sarthak Jain
Byron C. Wallace
FAtt
145
1,324
0
26 Feb 2019
Human-Centered Artificial Intelligence and Machine Learning
Mark O. Riedl
SyDa
110
267
0
31 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
134
2,551
0
24 Jan 2019
Applying Deep Learning To Airbnb Search
Malay Haldar
Mustafa Abdool
Prashant Ramanathan
Tao Xu
Shulin Yang
...
Qing Zhang
Nick Barrow-Williams
B. Turnbull
Brendan M. Collins
Thomas Legrand
DML
49
85
0
22 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.8K
94,891
0
11 Oct 2018
Towards Explanation of DNN-based Prediction with Guided Feature Inversion
Mengnan Du
Ninghao Liu
Qingquan Song
Xia Hu
FAtt
68
127
0
19 Mar 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
214
1,842
0
30 Nov 2017
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,164
0
30 Oct 2017
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
133
867
0
29 Oct 2017
Dynamic Routing Between Capsules
S. Sabour
Nicholas Frosst
Geoffrey E. Hinton
174
4,596
0
26 Oct 2017
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
201
2,226
0
12 Jun 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
701
131,652
0
12 Jun 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,520
0
11 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
210
2,894
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,989
0
04 Mar 2017
Understanding Neural Networks through Representation Erasure
Jiwei Li
Will Monroe
Dan Jurafsky
AAML
MILM
88
565
0
24 Dec 2016
Interpretation of Prediction Models Using the Input Gradient
Yotam Hechtlinger
FaML
AI4CE
FAtt
58
85
0
23 Nov 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
297
20,023
0
07 Oct 2016
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
632
29,076
0
09 Sep 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
180
3,701
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,990
0
16 Feb 2016
Character-level Convolutional Networks for Text Classification
Xiang Zhang
Jiaqi Zhao
Yann LeCun
268
6,113
0
04 Sep 2015
Extraction of Salient Sentences from Labelled Documents
Misha Denil
Alban Demiraj
Nando de Freitas
73
137
0
21 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,066
0
20 Dec 2014
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
558
27,311
0
01 Sep 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,295
0
20 Dec 2013
1