ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.07165
  4. Cited By
Beyond Individualized Recourse: Interpretable and Interactive Summaries
  of Actionable Recourses

Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses

15 September 2020
Kaivalya Rawal
Himabindu Lakkaraju
ArXivPDFHTML

Papers citing "Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses"

20 / 20 papers shown
Title
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Martin Pawelczyk
Johannes Haug
Klaus Broelemann
Gjergji Kasneci
OOD
CML
58
203
0
21 Oct 2019
FACE: Feasible and Actionable Counterfactual Explanations
FACE: Feasible and Actionable Counterfactual Explanations
Rafael Poyiadzi
Kacper Sokol
Raúl Santos-Rodríguez
T. D. Bie
Peter A. Flach
66
369
0
20 Sep 2019
Towards Realistic Individual Recourse and Actionable Explanations in
  Black-Box Decision Making Systems
Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems
Shalmali Joshi
Oluwasanmi Koyejo
Warut D. Vijitbenjaronk
Been Kim
Joydeep Ghosh
FaML
58
187
0
22 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
64
384
0
03 Jul 2019
Generating Counterfactual and Contrastive Explanations using SHAP
Generating Counterfactual and Contrastive Explanations using SHAP
Shubham Rathi
44
56
0
21 Jun 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
91
321
0
27 May 2019
Actionable Recourse in Linear Classification
Actionable Recourse in Linear Classification
Berk Ustun
Alexander Spangher
Yang Liu
FaML
105
549
0
18 Sep 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
98
2,350
0
01 Nov 2017
Interpretability via Model Extraction
Interpretability via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
47
129
0
29 Jun 2017
Interpretable Predictions of Tree-based Ensembles via Actionable Feature
  Tweaking
Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking
Gabriele Tolomei
Fabrizio Silvestri
Andrew Haines
M. Lalmas
53
208
0
20 Jun 2017
SmoothGrad: removing noise by adding noise
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
199
2,221
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,815
0
22 May 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
169
2,882
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
175
5,986
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
382
3,785
0
28 Feb 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
270
19,981
0
07 Oct 2016
How Much is 131 Million Dollars? Putting Numbers in Perspective with
  Compositional Descriptions
How Much is 131 Million Dollars? Putting Numbers in Perspective with Compositional Descriptions
Arun Tejasvi Chaganty
Percy Liang
AIMat
31
21
0
01 Sep 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,931
0
16 Feb 2016
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
303
7,289
0
20 Dec 2013
Efficient Bayesian Inference for Generalized Bradley-Terry Models
Efficient Bayesian Inference for Generalized Bradley-Terry Models
François Caron
Arnaud Doucet
153
141
0
08 Nov 2010
1