ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.06962
  4. Cited By
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

15 September 2020
Jang-Hyun Kim
Wonho Choo
Hyun Oh Song
    AAML
ArXivPDFHTML

Papers citing "Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup"

32 / 82 papers shown
Title
TokenMix: Rethinking Image Mixing for Data Augmentation in Vision
  Transformers
TokenMix: Rethinking Image Mixing for Data Augmentation in Vision Transformers
Jihao Liu
B. Liu
Hang Zhou
Hongsheng Li
Yu Liu
ViT
24
66
0
18 Jul 2022
Teach me how to Interpolate a Myriad of Embeddings
Teach me how to Interpolate a Myriad of Embeddings
Shashanka Venkataramanan
Ewa Kijak
Laurent Amsaleg
Yannis Avrithis
43
2
0
29 Jun 2022
Masked Autoencoders are Robust Data Augmentors
Masked Autoencoders are Robust Data Augmentors
Haohang Xu
Shuangrui Ding
Xiaopeng Zhang
H. Xiong
35
27
0
10 Jun 2022
CropMix: Sampling a Rich Input Distribution via Multi-Scale Cropping
CropMix: Sampling a Rich Input Distribution via Multi-Scale Cropping
Junlin Han
L. Petersson
Hongdong Li
Ian Reid
33
9
0
31 May 2022
RandoMix: A mixed sample data augmentation method with multiple mixed
  modes
RandoMix: A mixed sample data augmentation method with multiple mixed modes
Xiaoliang Liu
Furao Shen
Jian Zhao
Changhai Nie
11
15
0
18 May 2022
Robust Representation via Dynamic Feature Aggregation
Robust Representation via Dynamic Feature Aggregation
Haozhe Liu
Haoqin Ji
Yuexiang Li
Nanjun He
Haoqian Wu
Feng Liu
Linlin Shen
Yefeng Zheng
AAML
OOD
32
3
0
16 May 2022
How to Fine-tune Models with Few Samples: Update, Data Augmentation, and
  Test-time Augmentation
How to Fine-tune Models with Few Samples: Update, Data Augmentation, and Test-time Augmentation
Yujin Kim
Jaehoon Oh
Sungnyun Kim
Se-Young Yun
29
6
0
13 May 2022
TreeMix: Compositional Constituency-based Data Augmentation for Natural
  Language Understanding
TreeMix: Compositional Constituency-based Data Augmentation for Natural Language Understanding
Le Zhang
Zichao Yang
Diyi Yang
36
24
0
12 May 2022
A Comprehensive Survey of Image Augmentation Techniques for Deep
  Learning
A Comprehensive Survey of Image Augmentation Techniques for Deep Learning
Mingle Xu
Sook Yoon
A. Fuentes
D. Park
VLM
27
398
0
03 May 2022
Harnessing Hard Mixed Samples with Decoupled Regularizer
Harnessing Hard Mixed Samples with Decoupled Regularizer
Zicheng Liu
Siyuan Li
Ge Wang
Cheng Tan
Lirong Wu
Stan Z. Li
59
18
0
21 Mar 2022
RecursiveMix: Mixed Learning with History
RecursiveMix: Mixed Learning with History
Lingfeng Yang
Xiang Li
Borui Zhao
Renjie Song
Jian Yang
VLM
29
18
0
14 Mar 2022
CycleMix: A Holistic Strategy for Medical Image Segmentation from
  Scribble Supervision
CycleMix: A Holistic Strategy for Medical Image Segmentation from Scribble Supervision
Kecheng Zhang
Xiahai Zhuang
21
68
0
03 Mar 2022
Model-Agnostic Augmentation for Accurate Graph Classification
Model-Agnostic Augmentation for Accurate Graph Classification
Jaemin Yoo
Sooyeon Shim
U. Kang
GNN
29
29
0
21 Feb 2022
Preventing Manifold Intrusion with Locality: Local Mixup
Preventing Manifold Intrusion with Locality: Local Mixup
Raphael Baena
Lucas Drumetz
Vincent Gripon
AAML
21
15
0
12 Jan 2022
Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
  Label Mixing
Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated Label Mixing
Joonhyung Park
J. Yang
Jinwoo Shin
Sung Ju Hwang
Eunho Yang
30
23
0
16 Dec 2021
A Systematic Review of Robustness in Deep Learning for Computer Vision:
  Mind the gap?
A Systematic Review of Robustness in Deep Learning for Computer Vision: Mind the gap?
Nathan G. Drenkow
Numair Sani
I. Shpitser
Mathias Unberath
19
75
0
01 Dec 2021
Boosting Discriminative Visual Representation Learning with
  Scenario-Agnostic Mixup
Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup
Siyuan Li
Zicheng Liu
Zedong Wang
Di Wu
Zihan Liu
Stan Z. Li
35
26
0
30 Nov 2021
TransMix: Attend to Mix for Vision Transformers
TransMix: Attend to Mix for Vision Transformers
Jieneng Chen
Shuyang Sun
Ju He
Philip Torr
Alan Yuille
S. Bai
ViT
28
103
0
18 Nov 2021
Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure
  Preservation
Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure Preservation
Joonhyung Park
Hajin Shim
Eunho Yang
79
49
0
10 Nov 2021
Towards Understanding the Data Dependency of Mixup-style Training
Towards Understanding the Data Dependency of Mixup-style Training
Muthuraman Chidambaram
Xiang Wang
Yuzheng Hu
Chenwei Wu
Rong Ge
UQCV
47
24
0
14 Oct 2021
Observations on K-image Expansion of Image-Mixing Augmentation for
  Classification
Observations on K-image Expansion of Image-Mixing Augmentation for Classification
Joonhyun Jeong
Sungmin Cha
Jongwon Choi
Sangdoo Yun
Taesup Moon
Y. Yoo
VLM
21
6
0
08 Oct 2021
Mix3D: Out-of-Context Data Augmentation for 3D Scenes
Mix3D: Out-of-Context Data Augmentation for 3D Scenes
Alexey Nekrasov
Jonas Schult
Or Litany
Bastian Leibe
Francis Engelmann
3DPC
164
154
0
05 Oct 2021
Robust Semantic Segmentation with Superpixel-Mix
Robust Semantic Segmentation with Superpixel-Mix
Gianni Franchi
Nacim Belkhir
Mai Lan Ha
Yufei Hu
Andrei Bursuc
V. Blanz
Angela Yao
UQCV
36
22
0
02 Aug 2021
An overview of mixing augmentation methods and augmentation strategies
An overview of mixing augmentation methods and augmentation strategies
Dominik Lewy
Jacek Mańdziuk
23
61
0
21 Jul 2021
SSMix: Saliency-Based Span Mixup for Text Classification
SSMix: Saliency-Based Span Mixup for Text Classification
Soyoung Yoon
Gyuwan Kim
Kyumin Park
22
68
0
15 Jun 2021
Survey: Image Mixing and Deleting for Data Augmentation
Survey: Image Mixing and Deleting for Data Augmentation
Humza Naveed
Saeed Anwar
Munawar Hayat
Kashif Javed
Ajmal Mian
38
78
0
13 Jun 2021
It Takes Two to Tango: Mixup for Deep Metric Learning
It Takes Two to Tango: Mixup for Deep Metric Learning
Shashanka Venkataramanan
Bill Psomas
Ewa Kijak
Laurent Amsaleg
Konstantinos Karantzalos
Yannis Avrithis
23
25
0
09 Jun 2021
AlignMixup: Improving Representations By Interpolating Aligned Features
AlignMixup: Improving Representations By Interpolating Aligned Features
Shashanka Venkataramanan
Ewa Kijak
Laurent Amsaleg
Yannis Avrithis
WSOL
33
61
0
29 Mar 2021
When and How Mixup Improves Calibration
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Zou
UQCV
31
67
0
11 Feb 2021
How Does Mixup Help With Robustness and Generalization?
How Does Mixup Help With Robustness and Generalization?
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
Amirata Ghorbani
James Zou
AAML
20
244
0
09 Oct 2020
PatchUp: A Feature-Space Block-Level Regularization Technique for
  Convolutional Neural Networks
PatchUp: A Feature-Space Block-Level Regularization Technique for Convolutional Neural Networks
Mojtaba Faramarzi
Mohammad Amini
Akilesh Badrinaaraayanan
Vikas Verma
A. Chandar
AAML
34
31
0
14 Jun 2020
Deep Weakly-Supervised Learning Methods for Classification and
  Localization in Histology Images: A Survey
Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Images: A Survey
Jérôme Rony
Soufiane Belharbi
Jose Dolz
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
25
70
0
08 Sep 2019
Previous
12