ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.06415
  4. Cited By
Synbols: Probing Learning Algorithms with Synthetic Datasets

Synbols: Probing Learning Algorithms with Synthetic Datasets

14 September 2020
Alexandre Lacoste
Pau Rodríguez
Frederic Branchaud-Charron
Parmida Atighehchian
Massimo Caccia
I. Laradji
Alexandre Drouin
Matt Craddock
Laurent Charlin
David Vázquez
ArXivPDFHTML

Papers citing "Synbols: Probing Learning Algorithms with Synthetic Datasets"

39 / 39 papers shown
Title
Online Fast Adaptation and Knowledge Accumulation: a New Approach to
  Continual Learning
Online Fast Adaptation and Knowledge Accumulation: a New Approach to Continual Learning
Massimo Caccia
Pau Rodríguez López
O. Ostapenko
Fabrice Normandin
Min Lin
...
I. Laradji
Irina Rish
Alexande Lacoste
David Vazquez
Laurent Charlin
CLL
KELM
34
66
0
12 Mar 2020
Embedding Propagation: Smoother Manifold for Few-Shot Classification
Embedding Propagation: Smoother Manifold for Few-Shot Classification
Pau Rodríguez
I. Laradji
Alexandre Drouin
Alexandre Lacoste
38
194
0
09 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
277
921
0
02 Mar 2020
Invariant Risk Minimization Games
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
43
245
0
11 Feb 2020
Beyond temperature scaling: Obtaining well-calibrated multiclass
  probabilities with Dirichlet calibration
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration
Meelis Kull
Miquel Perelló Nieto
Markus Kängsepp
Telmo de Menezes e Silva Filho
Hao Song
Peter A. Flach
UQCV
48
378
0
28 Oct 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
70
136
0
22 Oct 2019
Quantifying the Carbon Emissions of Machine Learning
Quantifying the Carbon Emissions of Machine Learning
Alexandre Lacoste
A. Luccioni
Victor Schmidt
Thomas Dandres
54
688
0
21 Oct 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
43
578
0
10 Jul 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
137
2,190
0
05 Jul 2019
Energy and Policy Considerations for Deep Learning in NLP
Energy and Policy Considerations for Deep Learning in NLP
Emma Strubell
Ananya Ganesh
Andrew McCallum
35
2,633
0
05 Jun 2019
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL
  Vanishing
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing
Hao Fu
Chunyuan Li
Xiaodong Liu
Jianfeng Gao
Asli Celikyilmaz
Lawrence Carin
ODL
50
362
0
25 Mar 2019
Measuring Compositionality in Representation Learning
Measuring Compositionality in Representation Learning
Jacob Andreas
CoGe
50
146
0
19 Feb 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
80
1,451
0
29 Nov 2018
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock
Jeff Donahue
Karen Simonyan
194
5,363
0
28 Sep 2018
Learning deep representations by mutual information estimation and
  maximization
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSL
DRL
220
2,649
0
20 Aug 2018
Where are the Blobs: Counting by Localization with Point Supervision
Where are the Blobs: Counting by Localization with Point Supervision
I. Laradji
Negar Rostamzadeh
Pedro H. O. Pinheiro
David Vazquez
Mark Schmidt
36
195
0
25 Jul 2018
TADAM: Task dependent adaptive metric for improved few-shot learning
TADAM: Task dependent adaptive metric for improved few-shot learning
Boris N. Oreshkin
Pau Rodríguez López
Alexandre Lacoste
82
1,310
0
23 May 2018
Sparse Unsupervised Capsules Generalize Better
Sparse Unsupervised Capsules Generalize Better
D. Rawlinson
Abdelrahman Ahmed
Gideon Kowadlo
45
49
0
17 Apr 2018
CSRNet: Dilated Convolutional Neural Networks for Understanding the
  Highly Congested Scenes
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
Yuhong Li
Xiaofan Zhang
Deming Chen
112
1,325
0
27 Feb 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
35
1,336
0
16 Feb 2018
Learning to Compare: Relation Network for Few-Shot Learning
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
174
4,035
0
16 Nov 2017
CARLA: An Open Urban Driving Simulator
CARLA: An Open Urban Driving Simulator
Alexey Dosovitskiy
G. Ros
Felipe Codevilla
Antonio M. López
V. Koltun
VLM
115
5,111
0
10 Nov 2017
Count-ception: Counting by Fully Convolutional Redundant Counting
Count-ception: Counting by Fully Convolutional Redundant Counting
Joseph Paul Cohen
G. Boucher
C. A. Glastonbury
Henry Z. Lo
Yoshua Bengio
35
156
0
25 Mar 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
173
8,072
0
15 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
742
11,793
0
09 Mar 2017
Deep Bayesian Active Learning with Image Data
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDL
UQCV
31
1,717
0
08 Mar 2017
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary
  Visual Reasoning
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
Justin Johnson
B. Hariharan
Laurens van der Maaten
Li Fei-Fei
C. L. Zitnick
Ross B. Girshick
CoGe
255
2,346
0
20 Dec 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
255
7,286
0
13 Jun 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
219
7,951
0
23 May 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
247
37,704
0
20 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.1K
192,638
0
10 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
420
9,233
0
06 Jun 2015
Accelerating Very Deep Convolutional Networks for Classification and
  Detection
Accelerating Very Deep Convolutional Networks for Classification and Detection
Xinming Zhang
Jianhua Zou
Kaiming He
Jian Sun
40
792
0
26 May 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
224
43,154
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
519
149,474
0
22 Dec 2014
Recurrent Models of Visual Attention
Recurrent Models of Visual Attention
Volodymyr Mnih
N. Heess
Alex Graves
Koray Kavukcuoglu
VLM
87
3,645
0
24 Jun 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
321
16,972
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
189
15,825
0
12 Nov 2013
Bayesian Active Learning for Classification and Preference Learning
Bayesian Active Learning for Classification and Preference Learning
N. Houlsby
Ferenc Huszár
Zoubin Ghahramani
M. Lengyel
51
901
0
24 Dec 2011
1