Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.03782
Cited By
Analysis and Prediction of Deforming 3D Shapes using Oriented Bounding Boxes and LSTM Autoencoders
31 August 2020
Sara Hahner
Rodrigo Iza-Teran
Jochen Garcke
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Analysis and Prediction of Deforming 3D Shapes using Oriented Bounding Boxes and LSTM Autoencoders"
9 / 9 papers shown
Title
Learning Bidirectional LSTM Networks for Synthesizing 3D Mesh Animation Sequences
Yi-Ling Qiao
Lin Gao
Yu-Kun Lai
Shihong Xia
AI4CE
36
12
0
04 Oct 2018
Variational Autoencoders for Deforming 3D Mesh Models
Qingyang Tan
Lin Gao
Yu-kun Lai
Shi-hong Xia
AI4CE
70
200
0
13 Sep 2017
Sparse Data Driven Mesh Deformation
Lin Gao
Yu-kun Lai
Jie Yang
Ling-Xiao Zhang
Leif Kobbelt
Shi-hong Xia
55
74
0
05 Sep 2017
Deep Functional Maps: Structured Prediction for Dense Shape Correspondence
Or Litany
Tal Remez
Emanuele Rodolà
A. Bronstein
M. Bronstein
3DPC
149
286
0
27 Apr 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
412
1,823
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
810
3,287
0
24 Nov 2016
Unsupervised Learning of Video Representations using LSTMs
Nitish Srivastava
Elman Mansimov
Ruslan Salakhutdinov
SSL
135
2,591
0
16 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Generating Sequences With Recurrent Neural Networks
Alex Graves
GAN
155
4,039
0
04 Aug 2013
1