ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.03173
  4. Cited By
Are Deep Neural Architectures Losing Information? Invertibility Is
  Indispensable

Are Deep Neural Architectures Losing Information? Invertibility Is Indispensable

7 September 2020
Yang Liu
Zhenyue Qin
Saeed Anwar
Sabrina Caldwell
Tom Gedeon
ArXivPDFHTML

Papers citing "Are Deep Neural Architectures Losing Information? Invertibility Is Indispensable"

6 / 6 papers shown
Title
Coherent Semantic Attention for Image Inpainting
Coherent Semantic Attention for Image Inpainting
Hongyu Liu
Bin Jiang
Yi Xiao
Chao Yang
60
353
0
29 May 2019
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
267
3,124
0
09 Jul 2018
FFDNet: Toward a Fast and Flexible Solution for CNN based Image
  Denoising
FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising
Peng Sun
W. Zuo
Lei Zhang
106
2,116
0
11 Oct 2017
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
235
78
0
26 May 2016
Compression Artifacts Reduction by a Deep Convolutional Network
Compression Artifacts Reduction by a Deep Convolutional Network
Chao Dong
Yubin Deng
Chen Change Loy
Xiaoou Tang
SupR
46
793
0
27 Apr 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
414
16,944
0
20 Dec 2013
1