Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.03173
Cited By
Are Deep Neural Architectures Losing Information? Invertibility Is Indispensable
7 September 2020
Yang Liu
Zhenyue Qin
Saeed Anwar
Sabrina Caldwell
Tom Gedeon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Are Deep Neural Architectures Losing Information? Invertibility Is Indispensable"
6 / 6 papers shown
Title
Coherent Semantic Attention for Image Inpainting
Hongyu Liu
Bin Jiang
Yi Xiao
Chao Yang
60
353
0
29 May 2019
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
267
3,124
0
09 Jul 2018
FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising
Peng Sun
W. Zuo
Lei Zhang
106
2,116
0
11 Oct 2017
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
235
78
0
26 May 2016
Compression Artifacts Reduction by a Deep Convolutional Network
Chao Dong
Yubin Deng
Chen Change Loy
Xiaoou Tang
SupR
46
793
0
27 Apr 2015
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
414
16,944
0
20 Dec 2013
1