ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.02994
  4. Cited By
Stabilizing Invertible Neural Networks Using Mixture Models

Stabilizing Invertible Neural Networks Using Mixture Models

7 September 2020
Paul Hagemann
Sebastian Neumayer
ArXivPDFHTML

Papers citing "Stabilizing Invertible Neural Networks Using Mixture Models"

14 / 14 papers shown
Title
Stable Training of Normalizing Flows for High-dimensional Variational
  Inference
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
58
1
0
26 Feb 2024
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
37
6
0
27 Dec 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
34
7
0
04 Aug 2023
Conditional Generative Models are Provably Robust: Pointwise Guarantees
  for Bayesian Inverse Problems
Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems
Fabian Altekrüger
Paul Hagemann
Gabriele Steidl
TPM
37
9
0
28 Mar 2023
Proximal Residual Flows for Bayesian Inverse Problems
Proximal Residual Flows for Bayesian Inverse Problems
J. Hertrich
BDL
TPM
52
4
0
30 Nov 2022
A Neural-Network-Based Convex Regularizer for Inverse Problems
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
41
26
0
22 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation
  Functions
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
40
12
0
28 Oct 2022
Stability of Image-Reconstruction Algorithms
Stability of Image-Reconstruction Algorithms
Pol del Aguila Pla
Sebastian Neumayer
M. Unser
53
10
0
14 Jun 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
50
16
0
13 Apr 2022
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
32
24
0
24 Nov 2021
Resampling Base Distributions of Normalizing Flows
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
35
32
0
29 Oct 2021
An Introduction to Deep Generative Modeling
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
51
223
0
09 Mar 2021
Invertible Neural Networks versus MCMC for Posterior Reconstruction in
  Grazing Incidence X-Ray Fluorescence
Invertible Neural Networks versus MCMC for Posterior Reconstruction in Grazing Incidence X-Ray Fluorescence
A. Andrle
N. Farchmin
Paul Hagemann
Sebastian Heidenreich
V. Soltwisch
Gabriele Steidl
77
16
0
05 Feb 2021
Convolutional Proximal Neural Networks and Plug-and-Play Algorithms
Convolutional Proximal Neural Networks and Plug-and-Play Algorithms
J. Hertrich
Sebastian Neumayer
Gabriele Steidl
27
57
0
04 Nov 2020
1