ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.00668
  4. Cited By
Fed-Sim: Federated Simulation for Medical Imaging

Fed-Sim: Federated Simulation for Medical Imaging

1 September 2020
Daiqing Li
Amlan Kar
Nishant Ravikumar
Alejandro F Frangi
Sanja Fidler
    FedML
    MedIm
    AI4CE
ArXivPDFHTML

Papers citing "Fed-Sim: Federated Simulation for Medical Imaging"

11 / 11 papers shown
Title
PYRO-NN: Python Reconstruction Operators in Neural Networks
PYRO-NN: Python Reconstruction Operators in Neural Networks
Christopher Syben
Markus Michen
Bernhard Stimpel
Stephan Seitz
Stefan B. Ploner
Andreas Maier
AI4CE
31
62
0
30 Apr 2019
Meta-Sim: Learning to Generate Synthetic Datasets
Meta-Sim: Learning to Generate Synthetic Datasets
Amlan Kar
Aayush Prakash
Ming-Yuan Liu
Eric Cameracci
Justin Yuan
Matt Rusiniak
David Acuna
Antonio Torralba
Sanja Fidler
95
248
0
25 Apr 2019
Semantic Image Synthesis with Spatially-Adaptive Normalization
Semantic Image Synthesis with Spatially-Adaptive Normalization
Taesung Park
Ming-Yuan Liu
Ting-Chun Wang
Jun-Yan Zhu
127
2,679
0
18 Mar 2019
DeepDRR -- A Catalyst for Machine Learning in Fluoroscopy-guided
  Procedures
DeepDRR -- A Catalyst for Machine Learning in Fluoroscopy-guided Procedures
Mathias Unberath
Jan-Nico Zaech
Sing Chun Lee
Bastian Bier
J. Fotouhi
Mehran Armand
Nassir Navab
MedIm
OOD
36
109
0
22 Mar 2018
Optimizing the Latent Space of Generative Networks
Optimizing the Latent Space of Generative Networks
Piotr Bojanowski
Armand Joulin
David Lopez-Paz
Arthur Szlam
GAN
54
415
0
18 Jul 2017
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
252
1,949
0
24 Oct 2016
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
Özgün Çiçek
Ahmed Abdulkadir
S. Lienkamp
Thomas Brox
Olaf Ronneberger
3DV
3DPC
SSeg
3DH
133
6,483
0
21 Jun 2016
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Justin Johnson
Alexandre Alahi
Li Fei-Fei
SupR
189
10,202
0
27 Mar 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
234
17,328
0
17 Feb 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
900
149,474
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
963
99,991
0
04 Sep 2014
1