ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.12709
  4. Cited By
Canonical 3D Deformer Maps: Unifying parametric and non-parametric
  methods for dense weakly-supervised category reconstruction

Canonical 3D Deformer Maps: Unifying parametric and non-parametric methods for dense weakly-supervised category reconstruction

28 August 2020
David Novotny
Roman Shapovalov
Andrea Vedaldi
    3DPC
ArXivPDFHTML

Papers citing "Canonical 3D Deformer Maps: Unifying parametric and non-parametric methods for dense weakly-supervised category reconstruction"

5 / 5 papers shown
Title
Canonical Fields: Self-Supervised Learning of Pose-Canonicalized Neural
  Fields
Canonical Fields: Self-Supervised Learning of Pose-Canonicalized Neural Fields
Rohith Agaram
Shaurya Dewan
Rahul Sajnani
A. Poulenard
Madhava Krishna
Srinath Sridhar
41
6
0
05 Dec 2022
Virtual Correspondence: Humans as a Cue for Extreme-View Geometry
Virtual Correspondence: Humans as a Cue for Extreme-View Geometry
Wei-Chiu Ma
A. Yang
Shenlong Wang
R. Urtasun
Antonio Torralba
53
26
0
16 Jun 2022
To The Point: Correspondence-driven monocular 3D category reconstruction
To The Point: Correspondence-driven monocular 3D category reconstruction
Filippos Kokkinos
Iasonas Kokkinos
3DH
3DPC
29
24
0
10 Jun 2021
CoCoNets: Continuous Contrastive 3D Scene Representations
CoCoNets: Continuous Contrastive 3D Scene Representations
Shamit Lal
Mihir Prabhudesai
Ishita Mediratta
Adam W. Harley
Katerina Fragkiadaki
SSL
3DH
3DPC
36
25
0
08 Apr 2021
DensePose: Dense Human Pose Estimation In The Wild
DensePose: Dense Human Pose Estimation In The Wild
R. Güler
Natalia Neverova
Iasonas Kokkinos
3DH
211
1,386
0
01 Feb 2018
1