ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.11376
  4. Cited By
Causal Adversarial Network for Learning Conditional and Interventional
  Distributions

Causal Adversarial Network for Learning Conditional and Interventional Distributions

26 August 2020
Raha Moraffah
Bahman Moraffah
Mansooreh Karami
A. Raglin
Huan Liu
    OOD
    GAN
    CML
ArXivPDFHTML

Papers citing "Causal Adversarial Network for Learning Conditional and Interventional Distributions"

35 / 35 papers shown
Title
Masked Gradient-Based Causal Structure Learning
Masked Gradient-Based Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhuangyan Fang
Haoyang Li
Zhitang Chen
Jun Wang
CML
100
117
0
18 Oct 2019
Causal Discovery with Reinforcement Learning
Causal Discovery with Reinforcement Learning
Shengyu Zhu
Ignavier Ng
Zhitang Chen
CML
54
240
0
11 Jun 2019
Gradient-Based Neural DAG Learning
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDL
CML
50
273
0
05 Jun 2019
DAG-GNN: DAG Structure Learning with Graph Neural Networks
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDL
CML
GNN
67
485
0
22 Apr 2019
DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image
  Synthesis
DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis
Minfeng Zhu
Pingbo Pan
Wei Chen
Yi Yang
GAN
52
580
0
02 Apr 2019
Causal Discovery Toolbox: Uncover causal relationships in Python
Causal Discovery Toolbox: Uncover causal relationships in Python
Diviyan Kalainathan
Olivier Goudet
CML
49
82
0
06 Mar 2019
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock
Jeff Donahue
Karen Simonyan
237
5,381
0
28 Sep 2018
How good is my GAN?
How good is my GAN?
K. Shmelkov
Cordelia Schmid
Alahari Karteek
GAN
EGVM
51
348
0
25 Jul 2018
Generating Multi-Categorical Samples with Generative Adversarial
  Networks
Generating Multi-Categorical Samples with Generative Adversarial Networks
R. Camino
Christian A. Hammerschmidt
R. State
SyDa
GAN
36
71
0
03 Jul 2018
JointGAN: Multi-Domain Joint Distribution Learning with Generative
  Adversarial Nets
JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets
Yunchen Pu
Shuyang Dai
Zhe Gan
Weiyao Wang
Guoyin Wang
Yizhe Zhang
Ricardo Henao
Lawrence Carin
GAN
OOD
57
41
0
08 Jun 2018
DAGs with NO TEARS: Continuous Optimization for Structure Learning
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLa
CML
OffRL
82
937
0
04 Mar 2018
Is Generator Conditioning Causally Related to GAN Performance?
Is Generator Conditioning Causally Related to GAN Performance?
Augustus Odena
Jacob Buckman
Catherine Olsson
Tom B. Brown
C. Olah
Colin Raffel
Ian Goodfellow
AI4CE
54
113
0
23 Feb 2018
cGANs with Projection Discriminator
cGANs with Projection Discriminator
Takeru Miyato
Masanori Koyama
GAN
68
770
0
15 Feb 2018
CausalGAN: Learning Causal Implicit Generative Models with Adversarial
  Training
CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
Murat Kocaoglu
Christopher Snyder
A. Dimakis
S. Vishwanath
GAN
OOD
71
253
0
06 Sep 2017
MoCoGAN: Decomposing Motion and Content for Video Generation
MoCoGAN: Decomposing Motion and Content for Video Generation
Sergey Tulyakov
Ming-Yuan Liu
Xiaodong Yang
Jan Kautz
GAN
127
1,145
0
17 Jul 2017
Group invariance principles for causal generative models
Group invariance principles for causal generative models
M. Besserve
Naji Shajarisales
Bernhard Schölkopf
Dominik Janzing
55
49
0
05 May 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
173
9,533
0
31 Mar 2017
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
  Networks
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu
Taesung Park
Phillip Isola
Alexei A. Efros
GAN
111
5,554
0
30 Mar 2017
Generating Multi-label Discrete Patient Records using Generative
  Adversarial Networks
Generating Multi-label Discrete Patient Records using Generative Adversarial Networks
Edward Choi
Siddharth Biswal
B. Malin
J. Duke
Walter F. Stewart
Jimeng Sun
SyDa
GAN
195
576
0
19 Mar 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
163
4,825
0
26 Jan 2017
NIPS 2016 Tutorial: Generative Adversarial Networks
NIPS 2016 Tutorial: Generative Adversarial Networks
Ian Goodfellow
GAN
139
1,722
0
31 Dec 2016
Image-to-Image Translation with Conditional Adversarial Networks
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
SSeg
311
19,612
0
21 Nov 2016
Conditional Image Synthesis With Auxiliary Classifier GANs
Conditional Image Synthesis With Auxiliary Classifier GANs
Augustus Odena
C. Olah
Jonathon Shlens
GAN
412
3,209
0
30 Oct 2016
Revisiting Classifier Two-Sample Tests
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
137
401
0
20 Oct 2016
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
Lantao Yu
Weinan Zhang
Jun Wang
Yong Yu
GAN
62
2,396
0
18 Sep 2016
Coupled Generative Adversarial Networks
Coupled Generative Adversarial Networks
Ming-Yuan Liu
Oncel Tuzel
OOD
GAN
84
1,625
0
24 Jun 2016
Discovering Causal Signals in Images
Discovering Causal Signals in Images
David Lopez-Paz
Robert Nishihara
Soumith Chintala
Bernhard Schölkopf
Léon Bottou
CML
40
9
0
26 May 2016
Generative Adversarial Text to Image Synthesis
Generative Adversarial Text to Image Synthesis
Scott E. Reed
Zeynep Akata
Xinchen Yan
Lajanugen Logeswaran
Bernt Schiele
Honglak Lee
GAN
183
3,143
0
17 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
102
1,145
0
05 Nov 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
224
8,391
0
28 Nov 2014
Conditional Generative Adversarial Nets
Conditional Generative Adversarial Nets
M. Berk Mirza
Simon Osindero
GAN
SyDa
AI4CE
240
10,394
0
06 Nov 2014
Causal Discovery with Continuous Additive Noise Models
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
97
563
0
26 Sep 2013
Identifiability of Causal Graphs using Functional Models
Identifiability of Causal Graphs using Functional Models
J. Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
86
155
0
14 Feb 2012
1