Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.11193
Cited By
Individual Privacy Accounting via a Renyi Filter
25 August 2020
Vitaly Feldman
Tijana Zrnic
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Individual Privacy Accounting via a Renyi Filter"
23 / 23 papers shown
Title
Controlled privacy leakage propagation throughout overlapping grouped learning
Shahrzad Kiani
Franziska Boenisch
S. Draper
FedML
72
0
0
06 Mar 2025
On the Differential Privacy and Interactivity of Privacy Sandbox Reports
Badih Ghazi
Charlie Harrison
Arpana Hosabettu
Pritish Kamath
Alexander Knop
...
Ethan Leeman
Pasin Manurangsi
Vikas Sahu
Vikas Sahu
Phillipp Schoppmann
92
1
0
22 Dec 2024
Differentially Private Block-wise Gradient Shuffle for Deep Learning
Zilong Zhang
FedML
27
0
0
31 Jul 2024
Cross-silo Federated Learning with Record-level Personalized Differential Privacy
Junxu Liu
Jian Lou
Li Xiong
Jinfei Liu
Xiaofeng Meng
25
5
0
29 Jan 2024
Personalized Privacy Amplification via Importance Sampling
Dominik Fay
Sebastian Mair
Jens Sjölund
54
0
0
05 Jul 2023
Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD
Anvith Thudi
Hengrui Jia
Casey Meehan
Ilia Shumailov
Nicolas Papernot
24
3
0
01 Jul 2023
Multi-Task Differential Privacy Under Distribution Skew
Walid Krichene
Prateek Jain
Shuang Song
Mukund Sundararajan
Abhradeep Thakurta
Li Zhang
FedML
32
3
0
15 Feb 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
33
39
0
14 Feb 2023
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
56
49
0
02 Oct 2022
Bayesian and Frequentist Semantics for Common Variations of Differential Privacy: Applications to the 2020 Census
Daniel Kifer
John M. Abowd
Robert Ashmead
Ryan Cumings-Menon
Philip Leclerc
Ashwin Machanavajjhala
William Sexton
Pavel I Zhuravlev
46
26
0
07 Sep 2022
Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions
Vadym Doroshenko
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
16
40
0
10 Jul 2022
Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints
Justin Whitehouse
Zhiwei Steven Wu
Aaditya Ramdas
Ryan M. Rogers
11
9
0
15 Jun 2022
Privacy accounting
ε
\varepsilon
ε
conomics: Improving differential privacy composition via a posteriori bounds
Valentin Hartmann
Vincent Bindschaedler
Alexander Bentkamp
Robert West
16
1
0
06 May 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
32
158
0
13 Jan 2022
Privately Publishable Per-instance Privacy
Rachel Redberg
Yu-Xiang Wang
29
17
0
03 Nov 2021
Not all noise is accounted equally: How differentially private learning benefits from large sampling rates
Friedrich Dörmann
Osvald Frisk
L. Andersen
Christian Fischer Pedersen
FedML
56
25
0
12 Oct 2021
Towards General-purpose Infrastructure for Protecting Scientific Data Under Study
Andrew Trask
Kritika Prakash
35
3
0
04 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
152
349
0
25 Sep 2021
An automatic differentiation system for the age of differential privacy
Dmitrii Usynin
Alexander Ziller
Moritz Knolle
Andrew Trask
Kritika Prakash
Daniel Rueckert
Georgios Kaissis
23
3
0
22 Sep 2021
DDUO: General-Purpose Dynamic Analysis for Differential Privacy
Chiké Abuah
Alex Silence
David Darais
Joseph P. Near
40
12
0
16 Mar 2021
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
39
144
0
11 Feb 2021
The Sparse Vector Technique, Revisited
Haim Kaplan
Yishay Mansour
Uri Stemmer
30
17
0
02 Oct 2020
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
141
420
0
29 Nov 2018
1