Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.09161
Cited By
NoPeek: Information leakage reduction to share activations in distributed deep learning
20 August 2020
Praneeth Vepakomma
Abhishek Singh
O. Gupta
Ramesh Raskar
MIACV
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NoPeek: Information leakage reduction to share activations in distributed deep learning"
33 / 33 papers shown
Title
Quantifying Privacy Leakage in Split Inference via Fisher-Approximated Shannon Information Analysis
Ruijun Deng
Zhihui Lu
Qiang Duan
FedML
104
0
0
14 Apr 2025
Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems
Song Xia
Yi Yu
Wenhan Yang
Meiwen Ding
Zhuo Chen
Lingyu Duan
Alex C. Kot
Xudong Jiang
87
2
0
01 Mar 2025
Navigating the Designs of Privacy-Preserving Fine-tuning for Large Language Models
Haonan Shi
Tu Ouyang
An Wang
71
0
0
08 Jan 2025
Incentive Mechanism Design for Resource Sharing in Collaborative Edge Learning
Wei Yang Bryan Lim
Jer Shyuan Ng
Zehui Xiong
Dusit Niyato
Cyril Leung
Chunyan Miao
Qiang Yang
FedML
34
25
0
31 May 2020
SplitFed: When Federated Learning Meets Split Learning
Chandra Thapa
Pathum Chamikara Mahawaga Arachchige
S. Çamtepe
Lichao Sun
FedML
71
573
0
25 Apr 2020
On the Global Optima of Kernelized Adversarial Representation Learning
Bashir Sadeghi
Runyi Yu
Vishnu Boddeti
AAML
69
31
0
16 Oct 2019
Detailed comparison of communication efficiency of split learning and federated learning
Abhishek Singh
Praneeth Vepakomma
O. Gupta
Ramesh Raskar
FedML
43
188
0
18 Sep 2019
Data-Efficient Mutual Information Neural Estimator
Xiaoyu Lin
Indranil Sur
Samuel A. Nastase
Ajay Divakaran
Uri Hasson
Mohamed R. Amer
DRL
50
20
0
08 May 2019
FlowSAN: Privacy-enhancing Semi-Adversarial Networks to Confound Arbitrary Face-based Gender Classifiers
Vahid Mirjalili
S. Raschka
Arun Ross
PICV
CVBM
20
47
0
03 May 2019
Mitigating Information Leakage in Image Representations: A Maximum Entropy Approach
P. Roy
Vishnu Boddeti
13
99
0
11 Apr 2019
Protection Against Reconstruction and Its Applications in Private Federated Learning
Abhishek Bhowmick
John C. Duchi
Julien Freudiger
Gaurav Kapoor
Ryan M. Rogers
FedML
45
358
0
03 Dec 2018
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
83
694
0
03 Dec 2018
A fast algorithm for computing distance correlation
A. Chaudhuri
Wenhao Hu
61
65
0
26 Oct 2018
Distributed learning of deep neural network over multiple agents
O. Gupta
Ramesh Raskar
FedML
OOD
44
602
0
14 Oct 2018
Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study
Zhenyu Wu
Zhangyang Wang
Zhaowen Wang
Hailin Jin
AAML
PICV
53
153
0
22 Jul 2018
Secure Face Matching Using Fully Homomorphic Encryption
Vishnu Boddeti
PICV
CVBM
85
109
0
01 May 2018
Mitigating Unwanted Biases with Adversarial Learning
B. Zhang
Blake Lemoine
Margaret Mitchell
FaML
106
1,373
0
22 Jan 2018
Predicting Cardiovascular Risk Factors from Retinal Fundus Photographs using Deep Learning
Ryan Poplin
A. Varadarajan
Katy Blumer
Yun-Hui Liu
M. McConnell
G. Corrado
L. Peng
D. Webster
MedIm
46
1,326
0
31 Aug 2017
Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption
Ryo Yonetani
Vishnu Boddeti
Kris Kitani
Yoichi Sato
PICV
FedML
56
67
0
07 Apr 2017
Towards a Visual Privacy Advisor: Understanding and Predicting Privacy Risks in Images
Rakshith Shetty
Bernt Schiele
Mario Fritz
75
226
0
30 Mar 2017
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
107
1,385
0
24 Feb 2017
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
Nicolas Papernot
Martín Abadi
Ulfar Erlingsson
Ian Goodfellow
Kunal Talwar
50
1,009
0
18 Oct 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
267
4,620
0
18 Oct 2016
Supervised Dimensionality Reduction via Distance Correlation Maximization
Praneeth Vepakomma
Chetan Tonde
Ahmed Elgammal
48
38
0
03 Jan 2016
Censoring Representations with an Adversary
Harrison Edwards
Amos Storkey
AAML
FaML
47
504
0
18 Nov 2015
The Variational Fair Autoencoder
Christos Louizos
Kevin Swersky
Yujia Li
Max Welling
R. Zemel
DRL
149
633
0
03 Nov 2015
Fast Computing for Distance Covariance
X. Huo
G. Székely
68
128
0
06 Oct 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
129
317
0
18 Feb 2014
Stochastic Majorization-Minimization Algorithms for Large-Scale Optimization
Julien Mairal
76
160
0
19 Jun 2013
The affinely invariant distance correlation
J. Dueck
Dominic Edelmann
T. Gneiting
Donald Richards
122
42
0
09 Oct 2012
Equivalence of distance-based and RKHS-based statistics in hypothesis testing
Dino Sejdinovic
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
134
681
0
25 Jul 2012
Hypothesis testing using pairwise distances and associated kernels (with Appendix)
Dino Sejdinovic
Arthur Gretton
Bharath K. Sriperumbudur
Kenji Fukumizu
86
39
0
02 May 2012
Measuring and testing dependence by correlation of distances
G. Székely
Maria L. Rizzo
N. K. Bakirov
221
2,586
0
28 Mar 2008
1