Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.08461
Cited By
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties
19 August 2020
Benjamin Kurt Miller
Mario Geiger
Tess E. Smidt
Frank Noé
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties"
18 / 18 papers shown
Title
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
73
1
0
16 Apr 2025
Permutation Equivariant Neural Networks for Symmetric Tensors
Edward Pearce-Crump
106
1
0
14 Mar 2025
Molecule Graph Networks with Many-body Equivariant Interactions
Zetian Mao
Jiawen Li
Chen Liang
Diptesh Das
Masato Sumita
Koji Tsuda
Kelin Xia
Koji Tsuda
56
1
0
19 Jun 2024
Coarse Graining Molecular Dynamics with Graph Neural Networks
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
...
Yaoyi Chen
Simon Olsson
Gianni De Fabritiis
Frank Noé
C. Clementi
AI4CE
58
159
0
22 Jul 2020
Geometric Prediction: Moving Beyond Scalars
Raphael J. L. Townshend
Brent Townshend
Stephan Eismann
R. Dror
26
7
0
25 Jun 2020
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with a Kernel Approach
Jiang Wang
Stefan Chmiela
K. Müller
Frank Noè
C. Clementi
100
46
0
04 May 2020
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
93
861
0
06 Mar 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
128
42,038
0
03 Dec 2019
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
72
423
0
06 Jun 2019
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
58
501
0
06 Jul 2018
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
356
3,101
0
04 Jun 2018
Revisiting Small Batch Training for Deep Neural Networks
Dominic Masters
Carlo Luschi
ODL
53
665
0
20 Apr 2018
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
69
959
0
22 Feb 2018
Don't Decay the Learning Rate, Increase the Batch Size
Samuel L. Smith
Pieter-Jan Kindermans
Chris Ying
Quoc V. Le
ODL
82
990
0
01 Nov 2017
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Elad Hoffer
Itay Hubara
Daniel Soudry
ODL
134
798
0
24 May 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
288
1,808
0
02 Mar 2017
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
585
149,474
0
22 Dec 2014
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
98
1,581
0
12 Sep 2011
1