ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.06786
  4. Cited By
The Neural Tangent Kernel in High Dimensions: Triple Descent and a
  Multi-Scale Theory of Generalization

The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization

15 August 2020
Ben Adlam
Jeffrey Pennington
ArXivPDFHTML

Papers citing "The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization"

31 / 31 papers shown
Title
auto-fpt: Automating Free Probability Theory Calculations for Machine Learning Theory
auto-fpt: Automating Free Probability Theory Calculations for Machine Learning Theory
Arjun Subramonian
Elvis Dohmatob
26
0
0
14 Apr 2025
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Chenyang Zhang
Peifeng Gao
Difan Zou
Yuan Cao
OOD
MLT
59
0
0
11 Apr 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
Cengiz Pehlevan
AI4CE
64
1
0
04 Feb 2025
High dimensional analysis reveals conservative sharpening and a stochastic edge of stability
High dimensional analysis reveals conservative sharpening and a stochastic edge of stability
Atish Agarwala
Jeffrey Pennington
41
3
0
30 Apr 2024
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
51
1
0
18 Apr 2024
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Yan Sun
MLT
40
19
0
11 Oct 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
40
1
0
13 Sep 2023
How Spurious Features Are Memorized: Precise Analysis for Random and NTK
  Features
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
28
4
0
20 May 2023
Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation
Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation
Jin-Hong Du
Pratik V. Patil
Arun K. Kuchibhotla
24
11
0
25 Apr 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean
  Field Neural Networks
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
38
29
0
06 Apr 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features
  and Neural Tangent Kernels
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
40
10
0
03 Feb 2023
Demystifying Disagreement-on-the-Line in High Dimensions
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Yan Sun
Hamed Hassani
21
8
0
31 Jan 2023
Gradient flow in the gaussian covariate model: exact solution of
  learning curves and multiple descent structures
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
34
4
0
13 Dec 2022
Second-order regression models exhibit progressive sharpening to the
  edge of stability
Second-order regression models exhibit progressive sharpening to the edge of stability
Atish Agarwala
Fabian Pedregosa
Jeffrey Pennington
35
26
0
10 Oct 2022
The BUTTER Zone: An Empirical Study of Training Dynamics in Fully
  Connected Neural Networks
The BUTTER Zone: An Empirical Study of Training Dynamics in Fully Connected Neural Networks
Charles Edison Tripp
J. Perr-Sauer
L. Hayne
M. Lunacek
Jamil Gafur
AI4CE
21
0
0
25 Jul 2022
Regularization-wise double descent: Why it occurs and how to eliminate
  it
Regularization-wise double descent: Why it occurs and how to eliminate it
Fatih Yilmaz
Reinhard Heckel
30
11
0
03 Jun 2022
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Hong Hu
Yue M. Lu
53
15
0
13 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step
  Improves the Representation
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
40
121
0
03 May 2022
Contrasting random and learned features in deep Bayesian linear
  regression
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
A generalization gap estimation for overparameterized models via the
  Langevin functional variance
A generalization gap estimation for overparameterized models via the Langevin functional variance
Akifumi Okuno
Keisuke Yano
38
1
0
07 Dec 2021
Understanding Square Loss in Training Overparametrized Neural Network
  Classifiers
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wei Cao
Zhenguo Li
UQCV
AAML
41
19
0
07 Dec 2021
Model, sample, and epoch-wise descents: exact solution of gradient flow
  in the random feature model
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
37
13
0
22 Oct 2021
Deformed semicircle law and concentration of nonlinear random matrices
  for ultra-wide neural networks
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
35
18
0
20 Sep 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
49
229
0
27 Jul 2021
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Boris Hanin
BDL
32
43
0
04 Jul 2021
Towards an Understanding of Benign Overfitting in Neural Networks
Towards an Understanding of Benign Overfitting in Neural Networks
Zhu Li
Zhi-Hua Zhou
Arthur Gretton
MLT
33
35
0
06 Jun 2021
Fundamental tradeoffs between memorization and robustness in random
  features and neural tangent regimes
Fundamental tradeoffs between memorization and robustness in random features and neural tangent regimes
Elvis Dohmatob
25
9
0
04 Jun 2021
Appearance of Random Matrix Theory in Deep Learning
Appearance of Random Matrix Theory in Deep Learning
Nicholas P. Baskerville
Diego Granziol
J. Keating
15
11
0
12 Feb 2021
Explaining Neural Scaling Laws
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
Understanding Double Descent Requires a Fine-Grained Bias-Variance
  Decomposition
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
39
93
0
04 Nov 2020
Spectra of the Conjugate Kernel and Neural Tangent Kernel for
  linear-width neural networks
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Z. Fan
Zhichao Wang
44
71
0
25 May 2020
1