Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.06353
Cited By
Survey of XAI in digital pathology
14 August 2020
Milda Pocevičiūtė
Gabriel Eilertsen
Claes Lundström
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Survey of XAI in digital pathology"
19 / 19 papers shown
Title
AI in Thyroid Cancer Diagnosis: Techniques, Trends, and Future Directions
Yassine Habchi
Yassine Himeur
Hamza Kheddar
A. Boukabou
Shadi Atalla
A. Chouchane
A. Ouamane
W. Mansoor
24
50
0
25 Aug 2023
A Review on Explainable Artificial Intelligence for Healthcare: Why, How, and When?
M. Rubaiyat
Hossain Mondal
Prajoy Podder
23
56
0
10 Apr 2023
Augmenting Pathologists with NaviPath: Design and Evaluation of a Human-AI Collaborative Navigation System
H. Gu
Chun-Hung Yang
Mohammad Haeri
Junchang Wang
Shirley Tang
Wenzhong Yan
Shujin He
Christopher Kazu Williams
S. Magaki
Xiang Ánthony' Chen
25
27
0
14 Feb 2023
Holding AI to Account: Challenges for the Delivery of Trustworthy AI in Healthcare
Rob Procter
P. Tolmie
M. Rouncefield
11
31
0
29 Nov 2022
"Help Me Help the AI": Understanding How Explainability Can Support Human-AI Interaction
Sunnie S. Y. Kim
E. A. Watkins
Olga Russakovsky
Ruth C. Fong
Andrés Monroy-Hernández
38
107
0
02 Oct 2022
From Correlation to Causation: Formalizing Interpretable Machine Learning as a Statistical Process
Lukas Klein
Mennatallah El-Assady
Paul F. Jäger
CML
11
1
0
11 Jul 2022
Explainable Deep Learning Methods in Medical Image Classification: A Survey
Cristiano Patrício
João C. Neves
Luís F. Teixeira
XAI
24
52
0
10 May 2022
From Modern CNNs to Vision Transformers: Assessing the Performance, Robustness, and Classification Strategies of Deep Learning Models in Histopathology
Maximilian Springenberg
A. Frommholz
M. Wenzel
Eva Weicken
Jackie Ma
Nils Strodthoff
MedIm
30
42
0
11 Apr 2022
Generalisation effects of predictive uncertainty estimation in deep learning for digital pathology
Milda Pocevičiūtė
Gabriel Eilertsen
Sofia Jarkman
Claes Lundström
OOD
UQCV
25
24
0
17 Dec 2021
Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities
Waddah Saeed
C. Omlin
XAI
36
414
0
11 Nov 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
29
184
0
15 May 2021
Unbox the Black-box for the Medical Explainable AI via Multi-modal and Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond
Guang Yang
Qinghao Ye
Jun Xia
92
480
0
03 Feb 2021
Evolved Explainable Classifications for Lymph Node Metastases
Iam Palatnik de Sousa
M. Vellasco
E. C. Silva
19
6
0
14 May 2020
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
266
0
13 Jun 2018
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
232
201
0
06 Jul 2017
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
295
10,618
0
19 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1