ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.09693
25
24

Generalisation effects of predictive uncertainty estimation in deep learning for digital pathology

17 December 2021
Milda Pocevičiūtė
Gabriel Eilertsen
Sofia Jarkman
Claes Lundström
    OOD
    UQCV
ArXivPDFHTML
Abstract

Deep learning (DL) has shown great potential in digital pathology applications. The robustness of a diagnostic DL-based solution is essential for safe clinical deployment. In this work we evaluate if adding uncertainty estimates for DL predictions in digital pathology could result in increased value for the clinical applications, by boosting the general predictive performance or by detecting mispredictions. We compare the effectiveness of model-integrated methods (MC dropout and Deep ensembles) with a model-agnostic approach (Test time augmentation, TTA). Moreover, four uncertainty metrics are compared. Our experiments focus on two domain shift scenarios: a shift to a different medical center and to an underrepresented subtype of cancer. Our results show that uncertainty estimates increase reliability by reducing a model's sensitivity to classification threshold selection as well as by detecting between 70\% and 90\% of the mispredictions done by the model. Overall, the deep ensembles method achieved the best performance closely followed by TTA.

View on arXiv
Comments on this paper