ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.05730
  4. Cited By
Iterative Surrogate Model Optimization (ISMO): An active learning
  algorithm for PDE constrained optimization with deep neural networks

Iterative Surrogate Model Optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks

13 August 2020
K. Lye
Siddhartha Mishra
Deep Ray
P. Chandrasekhar
ArXivPDFHTML

Papers citing "Iterative Surrogate Model Optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks"

12 / 12 papers shown
Title
A numerical approach for the fractional Laplacian via deep neural
  networks
A numerical approach for the fractional Laplacian via deep neural networks
Nicolás Valenzuela
34
3
0
30 Aug 2023
Accelerated primal-dual methods with enlarged step sizes and operator
  learning for nonsmooth optimal control problems
Accelerated primal-dual methods with enlarged step sizes and operator learning for nonsmooth optimal control problems
Yongcun Song
Xiaoming Yuan
Hangrui Yue
AI4CE
19
2
0
01 Jul 2023
VI-DGP: A variational inference method with deep generative prior for
  solving high-dimensional inverse problems
VI-DGP: A variational inference method with deep generative prior for solving high-dimensional inverse problems
Yingzhi Xia
Qifeng Liao
Jinglai Li
27
2
0
22 Feb 2023
Nonlinear Reconstruction for Operator Learning of PDEs with
  Discontinuities
Nonlinear Reconstruction for Operator Learning of PDEs with Discontinuities
S. Lanthaler
Roberto Molinaro
Patrik Hadorn
Siddhartha Mishra
56
24
0
03 Oct 2022
Error analysis for deep neural network approximations of parametric
  hyperbolic conservation laws
Error analysis for deep neural network approximations of parametric hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
PINN
15
10
0
15 Jul 2022
Error estimates for physics informed neural networks approximating the
  Navier-Stokes equations
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
49
115
0
17 Mar 2022
Failure-averse Active Learning for Physics-constrained Systems
Failure-averse Active Learning for Physics-constrained Systems
Cheolhei Lee
Xing Wang
Jianguo Wu
Xiaowei Yue
AI4CE
19
7
0
27 Oct 2021
Error analysis for physics informed neural networks (PINNs)
  approximating Kolmogorov PDEs
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
21
100
0
28 Jun 2021
On the approximation of functions by tanh neural networks
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
23
138
0
18 Apr 2021
An overview on deep learning-based approximation methods for partial
  differential equations
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Higher-order Quasi-Monte Carlo Training of Deep Neural Networks
Higher-order Quasi-Monte Carlo Training of Deep Neural Networks
M. Longo
Suman Mishra
T. Konstantin Rusch
Christoph Schwab
35
20
0
06 Sep 2020
Estimates on the generalization error of Physics Informed Neural
  Networks (PINNs) for approximating PDEs
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
25
171
0
29 Jun 2020
1