ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.04859
  4. Cited By
BREEDS: Benchmarks for Subpopulation Shift

BREEDS: Benchmarks for Subpopulation Shift

11 August 2020
Shibani Santurkar
Dimitris Tsipras
A. Madry
    OOD
ArXivPDFHTML

Papers citing "BREEDS: Benchmarks for Subpopulation Shift"

39 / 39 papers shown
Title
Project-Probe-Aggregate: Efficient Fine-Tuning for Group Robustness
Project-Probe-Aggregate: Efficient Fine-Tuning for Group Robustness
B. Zhu
Jiequan Cui
Haiqi Zhang
Chi Zhang
85
0
0
12 Mar 2025
Detecting Systematic Weaknesses in Vision Models along Predefined Human-Understandable Dimensions
Detecting Systematic Weaknesses in Vision Models along Predefined Human-Understandable Dimensions
Sujan Sai Gannamaneni
Rohil Prakash Rao
Michael Mock
Maram Akila
Stefan Wrobel
AAML
168
0
0
17 Feb 2025
Challenging reaction prediction models to generalize to novel chemistry
Challenging reaction prediction models to generalize to novel chemistry
John Bradshaw
Anji Zhang
Babak Mahjour
David E. Graff
Marwin H. S. Segler
Connor W. Coley
40
1
0
11 Jan 2025
Learning Structured Representations by Embedding Class Hierarchy with Fast Optimal Transport
Learning Structured Representations by Embedding Class Hierarchy with Fast Optimal Transport
Siqi Zeng
Sixian Du
M. Yamada
Han Zhao
OT
46
0
0
04 Oct 2024
Evaluating Model Performance Under Worst-case Subpopulations
Evaluating Model Performance Under Worst-case Subpopulations
Mike Li
Hongseok Namkoong
Shangzhou Xia
48
17
0
01 Jul 2024
Fine-grained Classes and How to Find Them
Fine-grained Classes and How to Find Them
Matej Grcić
Artyom Gadetsky
Maria Brbić
32
1
0
16 Jun 2024
Decision Boundary-aware Knowledge Consolidation Generates Better
  Instance-Incremental Learner
Decision Boundary-aware Knowledge Consolidation Generates Better Instance-Incremental Learner
Qiang Nie
Weifu Fu
Yuhuan Lin
Jialin Li
Yifeng Zhou
Yong Liu
Lei Zhu
Chengjie Wang
38
0
0
05 Jun 2024
Embracing Diversity: Interpretable Zero-shot classification beyond one
  vector per class
Embracing Diversity: Interpretable Zero-shot classification beyond one vector per class
Mazda Moayeri
Michael G. Rabbat
Mark Ibrahim
Diane Bouchacourt
VLM
52
1
0
25 Apr 2024
Novel Node Category Detection Under Subpopulation Shift
Novel Node Category Detection Under Subpopulation Shift
Hsing-Huan Chung
Shravan Chaudhari
Yoav Wald
Xing Han
Joydeep Ghosh
36
1
0
01 Apr 2024
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Renchunzi Xie
Ambroise Odonnat
Vasilii Feofanov
I. Redko
Jianfeng Zhang
Bo An
UQCV
80
1
0
17 Jan 2024
HGCLIP: Exploring Vision-Language Models with Graph Representations for
  Hierarchical Understanding
HGCLIP: Exploring Vision-Language Models with Graph Representations for Hierarchical Understanding
Peng Xia
Xingtong Yu
Ming Hu
Lie Ju
Zhiyong Wang
Peibo Duan
Zongyuan Ge
VLM
57
10
0
23 Nov 2023
Improving neural network representations using human similarity
  judgments
Improving neural network representations using human similarity judgments
Lukas Muttenthaler
Lorenz Linhardt
Jonas Dippel
Robert A. Vandermeulen
Katherine L. Hermann
Andrew Kyle Lampinen
Simon Kornblith
40
29
0
07 Jun 2023
Rectifying Group Irregularities in Explanations for Distribution Shift
Rectifying Group Irregularities in Explanations for Distribution Shift
Adam Stein
Yinjun Wu
Eric Wong
Mayur Naik
37
1
0
25 May 2023
Preemptively Pruning Clever-Hans Strategies in Deep Neural Networks
Preemptively Pruning Clever-Hans Strategies in Deep Neural Networks
Lorenz Linhardt
Klaus-Robert Muller
G. Montavon
AAML
29
7
0
12 Apr 2023
Project and Probe: Sample-Efficient Domain Adaptation by Interpolating
  Orthogonal Features
Project and Probe: Sample-Efficient Domain Adaptation by Interpolating Orthogonal Features
Annie S. Chen
Yoonho Lee
Amrith Rajagopal Setlur
Sergey Levine
Chelsea Finn
VLM
32
9
0
10 Feb 2023
CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets
CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets
Zachary Novack
Julian McAuley
Zachary Chase Lipton
Saurabh Garg
VLM
35
79
0
06 Feb 2023
A Call to Reflect on Evaluation Practices for Failure Detection in Image
  Classification
A Call to Reflect on Evaluation Practices for Failure Detection in Image Classification
Paul F. Jaeger
Carsten T. Lüth
Lukas Klein
Till J. Bungert
UQCV
26
35
0
28 Nov 2022
ModelDiff: A Framework for Comparing Learning Algorithms
ModelDiff: A Framework for Comparing Learning Algorithms
Harshay Shah
Sung Min Park
Andrew Ilyas
A. Madry
SyDa
51
26
0
22 Nov 2022
Sufficient Invariant Learning for Distribution Shift
Sufficient Invariant Learning for Distribution Shift
Taero Kim
Sungjun Lim
Kyungwoo Song
OOD
31
2
0
24 Oct 2022
Surgical Fine-Tuning Improves Adaptation to Distribution Shifts
Surgical Fine-Tuning Improves Adaptation to Distribution Shifts
Yoonho Lee
Annie S. Chen
Fahim Tajwar
Ananya Kumar
Huaxiu Yao
Percy Liang
Chelsea Finn
OOD
61
197
0
20 Oct 2022
A Closer Look at Novel Class Discovery from the Labeled Set
A Closer Look at Novel Class Discovery from the Labeled Set
Ziyun Li
Jona Otholt
Ben Dai
Diane Hu
Christoph Meinel
Haojin Yang
BDL
23
12
0
19 Sep 2022
The Value of Out-of-Distribution Data
The Value of Out-of-Distribution Data
Ashwin De Silva
Rahul Ramesh
Carey E. Priebe
Pratik Chaudhari
Joshua T. Vogelstein
OODD
23
11
0
23 Aug 2022
Invariant Feature Learning for Generalized Long-Tailed Classification
Invariant Feature Learning for Generalized Long-Tailed Classification
Kaihua Tang
Mingyuan Tao
Jiaxin Qi
Zhenguang Liu
Hanwang Zhang
VLM
32
52
0
19 Jul 2022
Calibrated ensembles can mitigate accuracy tradeoffs under distribution
  shift
Calibrated ensembles can mitigate accuracy tradeoffs under distribution shift
Ananya Kumar
Tengyu Ma
Percy Liang
Aditi Raghunathan
UQCV
OODD
OOD
45
38
0
18 Jul 2022
Contrastive Adapters for Foundation Model Group Robustness
Contrastive Adapters for Foundation Model Group Robustness
Michael Zhang
Christopher Ré
VLM
18
62
0
14 Jul 2022
Distilling Model Failures as Directions in Latent Space
Distilling Model Failures as Directions in Latent Space
Saachi Jain
Hannah Lawrence
Ankur Moitra
A. Madry
23
90
0
29 Jun 2022
Delving into the Openness of CLIP
Delving into the Openness of CLIP
Shuhuai Ren
Lei Li
Xuancheng Ren
Guangxiang Zhao
Xu Sun
VLM
25
13
0
04 Jun 2022
Interpolating Compressed Parameter Subspaces
Interpolating Compressed Parameter Subspaces
Siddhartha Datta
N. Shadbolt
37
5
0
19 May 2022
Learn2Weight: Parameter Adaptation against Similar-domain Adversarial
  Attacks
Learn2Weight: Parameter Adaptation against Similar-domain Adversarial Attacks
Siddhartha Datta
AAML
34
4
0
15 May 2022
How to Combine Membership-Inference Attacks on Multiple Updated Models
How to Combine Membership-Inference Attacks on Multiple Updated Models
Matthew Jagielski
Stanley Wu
Alina Oprea
Jonathan R. Ullman
Roxana Geambasu
29
10
0
12 May 2022
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
Jean-Christophe Gagnon-Audet
Kartik Ahuja
Mohammad Javad Darvishi Bayazi
Pooneh Mousavi
G. Dumas
Irina Rish
OOD
CML
AI4TS
32
29
0
18 Mar 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution
  Shifts and Training Conflicts
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts
Weixin Liang
James Zou
OOD
40
82
0
14 Feb 2022
Log-Euclidean Signatures for Intrinsic Distances Between Unaligned
  Datasets
Log-Euclidean Signatures for Intrinsic Distances Between Unaligned Datasets
Tal Shnitzer
Mikhail Yurochkin
Kristjan Greenewald
Justin Solomon
38
6
0
03 Feb 2022
Editing a classifier by rewriting its prediction rules
Editing a classifier by rewriting its prediction rules
Shibani Santurkar
Dimitris Tsipras
Mahalaxmi Elango
David Bau
Antonio Torralba
A. Madry
KELM
186
89
0
02 Dec 2021
Clustering Effect of (Linearized) Adversarial Robust Models
Clustering Effect of (Linearized) Adversarial Robust Models
Yang Bai
Xin Yan
Yong Jiang
Shutao Xia
Yisen Wang
OOD
AAML
36
5
0
25 Nov 2021
An Information-theoretic Approach to Distribution Shifts
An Information-theoretic Approach to Distribution Shifts
Marco Federici
Ryota Tomioka
Patrick Forré
OOD
44
17
0
07 Jun 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
71
1,377
0
14 Dec 2020
Evaluating Model Robustness and Stability to Dataset Shift
Evaluating Model Robustness and Stability to Dataset Shift
Adarsh Subbaswamy
R. Adams
S. Saria
OOD
24
9
0
28 Oct 2020
A Testbed for Cross-Dataset Analysis
A Testbed for Cross-Dataset Analysis
Tatiana Tommasi
Tinne Tuytelaars
Barbara Caputo
171
96
0
24 Feb 2014
1