Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.03519
Cited By
Learning abstract structure for drawing by efficient motor program induction
8 August 2020
Lucas Y. Tian
Kevin Ellis
Marta Kryven
J. Tenenbaum
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning abstract structure for drawing by efficient motor program induction"
11 / 11 papers shown
Title
Patterns Over Principles: The Fragility of Inductive Reasoning in LLMs under Noisy Observations
Chunyang Li
Weiqi Wang
Tianshi Zheng
Yangqiu Song
LRM
134
6
0
22 Feb 2025
LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning
Utsav Singh
Pramit Bhattacharyya
Vinay P. Namboodiri
LM&Ro
97
1
0
09 Jun 2024
ANPL: Towards Natural Programming with Interactive Decomposition
Di Huang
Ziyuan Nan
Xingui Hu
Pengwei Jin
Shaohui Peng
...
Rui Zhang
Zidong Du
Qi Guo
Yewen Pu
Yunji Chen
87
9
0
29 May 2023
Identifying concept libraries from language about object structure
Catherine Wong
William P. McCarthy
Gabriel Grand
Yoni Friedman
J. Tenenbaum
Jacob Andreas
Robert D. Hawkins
Judith E. Fan
OCL
84
13
0
11 May 2022
A Hierarchical Bayesian Approach to Inverse Reinforcement Learning with Symbolic Reward Machines
Weichao Zhou
Wenchao Li
BDL
53
11
0
20 Apr 2022
Programmatic Reward Design by Example
Weichao Zhou
Wenchao Li
75
15
0
14 Dec 2021
Map Induction: Compositional spatial submap learning for efficient exploration in novel environments
Sugandha Sharma
Aidan Curtis
Marta Kryven
J. Tenenbaum
Ila Fiete
49
8
0
23 Oct 2021
Leveraging Language to Learn Program Abstractions and Search Heuristics
Catherine Wong
Kevin Ellis
J. Tenenbaum
Jacob Andreas
96
56
0
18 Jun 2021
Communicating Natural Programs to Humans and Machines
Samuel Acquaviva
Yewen Pu
Marta Kryven
Theo Sechopoulos
Catherine Wong
Gabrielle Ecanow
Maxwell Nye
Michael Henry Tessler
J. Tenenbaum
92
42
0
15 Jun 2021
SketchEmbedNet: Learning Novel Concepts by Imitating Drawings
Alexander Wang
Mengye Ren
R. Zemel
SSL
46
22
0
27 Aug 2020
DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning
Kevin Ellis
Catherine Wong
Maxwell Nye
Mathias Sablé-Meyer
Luc Cary
Lucas Morales
Luke B. Hewitt
Armando Solar-Lezama
J. Tenenbaum
NAI
CLL
108
196
0
15 Jun 2020
1