ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.03288
  4. Cited By
Rejoinder: On nearly assumption-free tests of nominal confidence
  interval coverage for causal parameters estimated by machine learning

Rejoinder: On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning

7 August 2020
Lin Liu
Rajarshi Mukherjee
J. M. Robins
    CML
ArXivPDFHTML

Papers citing "Rejoinder: On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning"

27 / 27 papers shown
Title
Assumption-lean inference for generalised linear model parameters
Assumption-lean inference for generalised linear model parameters
S. Vansteelandt
O. Dukes
CML
73
49
0
15 Jun 2020
Universal Inference
Universal Inference
Larry A. Wasserman
Aaditya Ramdas
Sivaraman Balakrishnan
59
146
0
24 Dec 2019
On the minimax optimality and superiority of deep neural network
  learning over sparse parameter spaces
On the minimax optimality and superiority of deep neural network learning over sparse parameter spaces
Satoshi Hayakawa
Taiji Suzuki
26
48
0
22 May 2019
Characterization of parameters with a mixed bias property
Characterization of parameters with a mixed bias property
A. Rotnitzky
Ezequiel Smucler
J. M. Robins
41
66
0
07 Apr 2019
Optimal estimation of variance in nonparametric regression with random
  design
Optimal estimation of variance in nonparametric regression with random design
Yandi Shen
Chao Gao
Daniela Witten
Fang Han
42
19
0
27 Feb 2019
User-Friendly Covariance Estimation for Heavy-Tailed Distributions
User-Friendly Covariance Estimation for Heavy-Tailed Distributions
Y. Ke
Stanislav Minsker
Zhao Ren
Qiang Sun
Wen-Xin Zhou
37
57
0
05 Nov 2018
Adaptivity of deep ReLU network for learning in Besov and mixed smooth
  Besov spaces: optimal rate and curse of dimensionality
Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality
Taiji Suzuki
113
243
0
18 Oct 2018
Deep Neural Networks for Estimation and Inference
Deep Neural Networks for Estimation and Inference
M. Farrell
Tengyuan Liang
S. Misra
BDL
121
254
0
26 Sep 2018
Approximation and Estimation for High-Dimensional Deep Learning Networks
Approximation and Estimation for High-Dimensional Deep Learning Networks
Andrew R. Barron
Jason M. Klusowski
48
59
0
10 Sep 2018
Moving Beyond Sub-Gaussianity in High-Dimensional Statistics:
  Applications in Covariance Estimation and Linear Regression
Moving Beyond Sub-Gaussianity in High-Dimensional Statistics: Applications in Covariance Estimation and Linear Regression
Arun K. Kuchibhotla
Abhishek Chakrabortty
44
108
0
08 Apr 2018
Cross-Fitting and Fast Remainder Rates for Semiparametric Estimation
Cross-Fitting and Fast Remainder Rates for Semiparametric Estimation
Whitney Newey
Jamie Robins
61
147
0
27 Jan 2018
Nonparametric regression using deep neural networks with ReLU activation
  function
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
159
805
0
22 Aug 2017
Estimation of the covariance structure of heavy-tailed distributions
Estimation of the covariance structure of heavy-tailed distributions
Stanislav Minsker
Xiaohan Wei
57
38
0
01 Aug 2017
Semiparametric Efficient Empirical Higher Order Influence Function
  Estimators
Semiparametric Efficient Empirical Higher Order Influence Function Estimators
Lin Liu
Rajarshi Mukherjee
Whitney Newey
J. M. Robins
49
38
0
22 May 2017
Efficient and Adaptive Linear Regression in Semi-Supervised Settings
Efficient and Adaptive Linear Regression in Semi-Supervised Settings
Abhishek Chakrabortty
Tianxi Cai
28
76
0
17 Jan 2017
Bootstrapping and Sample Splitting For High-Dimensional, Assumption-Free
  Inference
Bootstrapping and Sample Splitting For High-Dimensional, Assumption-Free Inference
Alessandro Rinaldo
Larry A. Wasserman
M. G'Sell
Jing Lei
53
94
0
16 Nov 2016
Generalized Random Forests
Generalized Random Forests
Susan Athey
J. Tibshirani
Stefan Wager
161
1,348
0
05 Oct 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
349
18,300
0
27 May 2016
Numerical Implementation of the QuEST Function
Numerical Implementation of the QuEST Function
Olivier Ledoit
Michael Wolf
24
70
0
22 Jan 2016
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model
D. Donoho
M. Gavish
Iain M. Johnstone
78
206
0
04 Nov 2013
Optimal Uniform Convergence Rates for Sieve Nonparametric Instrumental
  Variables Regression
Optimal Uniform Convergence Rates for Sieve Nonparametric Instrumental Variables Regression
Xiaohong Chen
T. Christensen
42
22
0
02 Nov 2013
Optimal Linear Shrinkage Estimator for Large Dimensional Precision
  Matrix
Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix
Taras Bodnar
Arjun K. Gupta
Nestor Parolya
122
52
0
05 Aug 2013
The Bayesian Analysis of Complex, High-Dimensional Models: Can It Be
  CODA?
The Bayesian Analysis of Complex, High-Dimensional Models: Can It Be CODA?
Yaácov Ritov
Peter J. Bickel
A. Gamst
B. Kleijn
63
28
0
25 Mar 2012
Sparse Models and Methods for Optimal Instruments with an Application to
  Eminent Domain
Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain
A. Belloni
Daniel L. Chen
Victor Chernozhukov
Christian B. Hansen
145
554
0
21 Oct 2010
Parameter tuning in pointwise adaptation using a propagation approach
Parameter tuning in pointwise adaptation using a propagation approach
V. Spokoiny
Céline Vial
89
34
0
25 Aug 2009
Higher order influence functions and minimax estimation of nonlinear
  functionals
Higher order influence functions and minimax estimation of nonlinear functionals
J. M. Robins
Lingling Li
E. T. Tchetgen
A. van der Vaart
144
241
0
20 May 2008
Effect of mean on variance function estimation in nonparametric
  regression
Effect of mean on variance function estimation in nonparametric regression
Lie Wang
L. Brown
T. Tony Cai
M. Levine
197
118
0
04 Apr 2008
1