ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.02793
  4. Cited By
Generative Adversarial Networks for Image and Video Synthesis:
  Algorithms and Applications

Generative Adversarial Networks for Image and Video Synthesis: Algorithms and Applications

6 August 2020
Xuan Li
Xun Huang
Jiahui Yu
Ting-Chun Wang
Arun Mallya
    GAN
ArXivPDFHTML

Papers citing "Generative Adversarial Networks for Image and Video Synthesis: Algorithms and Applications"

15 / 215 papers shown
Title
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Justin Johnson
Alexandre Alahi
Li Fei-Fei
SupR
180
10,202
0
27 Mar 2016
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDL
DRL
70
907
0
06 Feb 2016
Autoencoding beyond pixels using a learned similarity metric
Autoencoding beyond pixels using a learned similarity metric
Anders Boesen Lindbo Larsen
Søren Kaae Sønderby
Hugo Larochelle
Ole Winther
GAN
124
2,061
0
31 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
226
13,968
0
19 Nov 2015
Deep multi-scale video prediction beyond mean square error
Deep multi-scale video prediction beyond mean square error
Michaël Mathieu
Camille Couprie
Yann LeCun
GAN
97
1,881
0
17 Nov 2015
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
Jiwon Kim
Jung Kwon Lee
Kyoung Mu Lee
SupR
91
6,164
0
14 Nov 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
243
4,143
0
21 May 2015
Unsupervised Learning of Video Representations using LSTMs
Unsupervised Learning of Video Representations using LSTMs
Nitish Srivastava
Elman Mansimov
Ruslan Salakhutdinov
SSL
110
2,586
0
16 Feb 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
279
43,154
0
11 Feb 2015
Image Super-Resolution Using Deep Convolutional Networks
Image Super-Resolution Using Deep Convolutional Networks
Chao Dong
Chen Change Loy
Kaiming He
Xiaoou Tang
SupR
98
8,048
0
31 Dec 2014
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
678
149,474
0
22 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
91
2,246
0
30 Oct 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
344
16,972
0
20 Dec 2013
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
155
12,384
0
24 Jun 2012
Previous
12345