Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.01132
Cited By
Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic Multi-Objective Approach
3 August 2020
Suyun Liu
Luis Nunes Vicente
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic Multi-Objective Approach"
31 / 31 papers shown
Title
A Multi-Objective Evaluation Framework for Analyzing Utility-Fairness Trade-Offs in Machine Learning Systems
Gökhan Özbulak
Oscar Jimenez-del-Toro
Maíra Fatoretto
Lilian Berton
André Anjos
FaML
58
0
0
14 Mar 2025
You Only Debias Once: Towards Flexible Accuracy-Fairness Trade-offs at Inference Time
Xiaotian Han
Tianlong Chen
Kaixiong Zhou
Zhimeng Jiang
Zhangyang Wang
Xia Hu
165
0
0
10 Mar 2025
FERERO: A Flexible Framework for Preference-Guided Multi-Objective Learning
Lisha Chen
A. F. M. Saif
Yanning Shen
Tianyi Chen
73
2
0
02 Dec 2024
Best Practices for Responsible Machine Learning in Credit Scoring
Giovani Valdrighi
Athyrson M. Ribeiro
Jansen S. B. Pereira
Vitoria Guardieiro
Arthur Hendricks
...
Juan David Nieto Garcia
Felipe F. Bocca
Thalita B. Veronese
Lucas Wanner
Marcos Medeiros Raimundo
FaML
37
0
0
30 Sep 2024
A Unified View of Group Fairness Tradeoffs Using Partial Information Decomposition
Faisal Hamman
Sanghamitra Dutta
47
2
0
07 Jun 2024
Evolutionary Multi-Objective Optimisation for Fairness-Aware Self Adjusting Memory Classifiers in Data Streams
Pivithuru Thejan Amarasinghe
Diem Pham
Binh Tran
Su Nguyen
Yuan Sun
D. Alahakoon
24
0
0
18 Apr 2024
Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality
Khadija Zanna
Akane Sano
FaML
43
1
0
12 Apr 2024
InSaAF: Incorporating Safety through Accuracy and Fairness | Are LLMs ready for the Indian Legal Domain?
Yogesh Tripathi
Raghav Donakanti
Sahil Girhepuje
Ishan Kavathekar
Bhaskara Hanuma Vedula
Gokul S Krishnan
Shreya Goyal
Anmol Goel
Balaraman Ravindran
Ponnurangam Kumaraguru
ALM
AILaw
ELM
19
1
0
16 Feb 2024
ATE-SG: Alternate Through the Epochs Stochastic Gradient for Multi-Task Neural Networks
Stefania Bellavia
Francesco Della Santa
Alessandra Papini
38
0
0
26 Dec 2023
Search-Based Fairness Testing: An Overview
Hussaini Mamman
S. Basri
A. Balogun
A. A. Imam
Ganesh M. Kumar
L. F. Capretz
32
1
0
10 Nov 2023
Group-blind optimal transport to group parity and its constrained variants
Quan-Gen Zhou
Jakub Marecek
34
3
0
17 Oct 2023
Bias Testing and Mitigation in LLM-based Code Generation
Dong Huang
Qingwen Bu
Jie M. Zhang
Xiaofei Xie
Junjie Chen
Heming Cui
45
20
0
03 Sep 2023
Demystifying Local and Global Fairness Trade-offs in Federated Learning Using Partial Information Decomposition
Faisal Hamman
Sanghamitra Dutta
FedML
25
11
0
21 Jul 2023
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
38
2
0
24 May 2023
Earning Extra Performance from Restrictive Feedbacks
Jing Li
Yuangang Pan
Yueming Lyu
Yinghua Yao
Yulei Sui
Ivor W. Tsang
20
3
0
28 Apr 2023
FairPilot: An Explorative System for Hyperparameter Tuning through the Lens of Fairness
Francesco Di Carlo
Nazanin Nezami
Hadis Anahideh
Abolfazl Asudeh
22
1
0
10 Apr 2023
Superhuman Fairness
Omid Memarrast
Linh Vu
Brian D. Ziebart
FaML
15
0
0
31 Jan 2023
Mitigating Unfairness via Evolutionary Multi-objective Ensemble Learning
Qingquan Zhang
Jialin Liu
Zeqi Zhang
J. Wen
Bifei Mao
Xin Yao
FaML
42
17
0
30 Oct 2022
Artificial Intelligence Nomenclature Identified From Delphi Study on Key Issues Related to Trust and Barriers to Adoption for Autonomous Systems
Thomas E. Doyle
Victoria Tucci
Calvin Zhu
Yifei Zhang
Basem Yassa
Sajjad Rashidiani
Md Asif Khan
Reza Samavi
Michael Noseworthy
S. Yule
21
1
0
14 Oct 2022
Sampling in Constrained Domains with Orthogonal-Space Variational Gradient Descent
Ruqi Zhang
Qiang Liu
Xin T. Tong
BDL
DRL
9
11
0
12 Oct 2022
FAIR-FATE: Fair Federated Learning with Momentum
Teresa Salazar
Miguel X. Fernandes
Helder Araújo
Pedro Abreu
FedML
38
18
0
27 Sep 2022
Generalization In Multi-Objective Machine Learning
Peter Súkeník
Christoph H. Lampert
AI4CE
31
5
0
29 Aug 2022
Towards Fairness-Aware Multi-Objective Optimization
Guo-Ding Yu
Lianbo Ma
W. Du
WenLi Du
Yaochu Jin
FaML
30
7
0
22 Jul 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
33
159
0
14 Jul 2022
Fair Classification via Transformer Neural Networks: Case Study of an Educational Domain
Modar Sulaiman
Kallol Roy
14
0
0
03 Jun 2022
FADE: FAir Double Ensemble Learning for Observable and Counterfactual Outcomes
Alan Mishler
Edward H. Kennedy
FaML
27
23
0
01 Sep 2021
The Sharpe predictor for fairness in machine learning
Suyun Liu
Luis Nunes Vicente
43
3
0
13 Aug 2021
Learning Bias-Invariant Representation by Cross-Sample Mutual Information Minimization
Wei-wei Zhu
Haitian Zheng
Haofu Liao
Weijian Li
Jiebo Luo
24
43
0
11 Aug 2021
Learning the Pareto Front with Hypernetworks
Aviv Navon
Aviv Shamsian
Gal Chechik
Ethan Fetaya
19
138
0
08 Oct 2020
Intelligence plays dice: Stochasticity is essential for machine learning
M. Sabuncu
32
6
0
17 Aug 2020
The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning
Suyun Liu
Luis Nunes Vicente
20
71
0
10 Jul 2019
1