ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.15139
  4. Cited By
Deriving Differential Target Propagation from Iterating Approximate
  Inverses

Deriving Differential Target Propagation from Iterating Approximate Inverses

29 July 2020
Yoshua Bengio
ArXivPDFHTML

Papers citing "Deriving Differential Target Propagation from Iterating Approximate Inverses"

17 / 17 papers shown
Title
Local Loss Optimization in the Infinite Width: Stable Parameterization of Predictive Coding Networks and Target Propagation
Local Loss Optimization in the Infinite Width: Stable Parameterization of Predictive Coding Networks and Target Propagation
Satoki Ishikawa
Rio Yokota
Ryo Karakida
49
0
0
04 Nov 2024
Gradient-Free Training of Recurrent Neural Networks using Random
  Perturbations
Gradient-Free Training of Recurrent Neural Networks using Random Perturbations
Jesus Garcia Fernandez
Sander Keemink
Marcel van Gerven
AAML
50
4
0
14 May 2024
A Review of Neuroscience-Inspired Machine Learning
A Review of Neuroscience-Inspired Machine Learning
Alexander Ororbia
A. Mali
Adam Kohan
Beren Millidge
Tommaso Salvatori
40
7
0
16 Feb 2024
Fixed-Weight Difference Target Propagation
Fixed-Weight Difference Target Propagation
Tatsukichi Shibuya
Nakamasa Inoue
Rei Kawakami
Ikuro Sato
AAML
24
3
0
19 Dec 2022
Holomorphic Equilibrium Propagation Computes Exact Gradients Through
  Finite Size Oscillations
Holomorphic Equilibrium Propagation Computes Exact Gradients Through Finite Size Oscillations
Axel Laborieux
Friedemann Zenke
41
33
0
01 Sep 2022
A Theoretical Framework for Inference and Learning in Predictive Coding
  Networks
A Theoretical Framework for Inference and Learning in Predictive Coding Networks
Beren Millidge
Yuhang Song
Tommaso Salvatori
Thomas Lukasiewicz
Rafal Bogacz
34
12
0
21 Jul 2022
A Theoretical Framework for Inference Learning
A Theoretical Framework for Inference Learning
Nick Alonso
Beren Millidge
J. Krichmar
Emre Neftci
22
16
0
01 Jun 2022
Minimizing Control for Credit Assignment with Strong Feedback
Minimizing Control for Credit Assignment with Strong Feedback
Alexander Meulemans
Matilde Tristany Farinha
Maria R. Cervera
João Sacramento
Benjamin Grewe
22
17
0
14 Apr 2022
Gradients without Backpropagation
Gradients without Backpropagation
A. G. Baydin
Barak A. Pearlmutter
Don Syme
Frank Wood
Philip Torr
38
66
0
17 Feb 2022
Towards Scaling Difference Target Propagation by Learning Backprop
  Targets
Towards Scaling Difference Target Propagation by Learning Backprop Targets
M. Ernoult
Fabrice Normandin
A. Moudgil
Sean Spinney
Eugene Belilovsky
Irina Rish
Blake A. Richards
Yoshua Bengio
19
28
0
31 Jan 2022
Target Propagation via Regularized Inversion
Target Propagation via Regularized Inversion
Vincent Roulet
Zaïd Harchaoui
BDL
AAML
27
4
0
02 Dec 2021
Benchmarking the Accuracy and Robustness of Feedback Alignment
  Algorithms
Benchmarking the Accuracy and Robustness of Feedback Alignment Algorithms
Albert Jiménez Sanfiz
Mohamed Akrout
OOD
AAML
25
8
0
30 Aug 2021
Applications of the Free Energy Principle to Machine Learning and
  Neuroscience
Applications of the Free Energy Principle to Machine Learning and Neuroscience
Beren Millidge
DRL
28
7
0
30 Jun 2021
Credit Assignment in Neural Networks through Deep Feedback Control
Credit Assignment in Neural Networks through Deep Feedback Control
Alexander Meulemans
Matilde Tristany Farinha
Javier García Ordónez
Pau Vilimelis Aceituno
João Sacramento
Benjamin Grewe
31
35
0
15 Jun 2021
Training Deep Architectures Without End-to-End Backpropagation: A Survey
  on the Provably Optimal Methods
Training Deep Architectures Without End-to-End Backpropagation: A Survey on the Provably Optimal Methods
Shiyu Duan
José C. Príncipe
MQ
38
3
0
09 Jan 2021
Self Normalizing Flows
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
30
14
0
14 Nov 2020
Biological credit assignment through dynamic inversion of feedforward
  networks
Biological credit assignment through dynamic inversion of feedforward networks
William F. Podlaski
C. Machens
27
19
0
10 Jul 2020
1