Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.14527
Cited By
When and why PINNs fail to train: A neural tangent kernel perspective
28 July 2020
Sizhuang He
Xinling Yu
P. Perdikaris
Re-assign community
ArXiv
PDF
HTML
Papers citing
"When and why PINNs fail to train: A neural tangent kernel perspective"
22 / 22 papers shown
Title
Dual-Balancing for Physics-Informed Neural Networks
Chenhong Zhou
Jie Chen
Zaifeng Yang
Ching Eng Png
PINN
AI4CE
78
0
0
16 May 2025
Anant-Net: Breaking the Curse of Dimensionality with Scalable and Interpretable Neural Surrogate for High-Dimensional PDEs
Sidharth S. Menon
Ameya D. Jagtap
PINN
294
0
0
06 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
95
0
0
25 Apr 2025
PIED: Physics-Informed Experimental Design for Inverse Problems
Apivich Hemachandra
Gregory Kang Ruey Lau
Szu Hui Ng
Bryan Kian Hsiang Low
PINN
71
0
0
10 Mar 2025
STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation
Alireza Morsali
MohammadJavad Vaez
Mohammadhossein Soltani
Amirhossein Kazerouni
Babak Taati
Morteza Mohammad-Noori
315
1
0
02 Feb 2025
MILP initialization for solving parabolic PDEs with PINNs
Sirui Li
Federica Bragone
Matthieu Barreau
Kateryna Morozovska
69
0
0
28 Jan 2025
Theoretical characterisation of the Gauss-Newton conditioning in Neural Networks
Jim Zhao
Sidak Pal Singh
Aurelien Lucchi
AI4CE
74
0
0
04 Nov 2024
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
59
2
0
04 Oct 2024
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Leonardo Ferreira Guilhoto
P. Perdikaris
70
7
0
02 Oct 2024
Explain Like I'm Five: Using LLMs to Improve PDE Surrogate Models with Text
Cooper Lorsung
Amir Barati Farimani
AI4CE
120
1
0
02 Oct 2024
On the expressiveness and spectral bias of KANs
Yixuan Wang
Jonathan W. Siegel
Ziming Liu
Thomas Y. Hou
62
10
0
02 Oct 2024
SetPINNs: Set-based Physics-informed Neural Networks
Mayank Nagda
Phil Ostheimer
Thomas Specht
Frank Rhein
Fabian Jirasek
Stephan Mandt
Marius Kloft
Sophie Fellenz
PINN
3DPC
91
1
0
30 Sep 2024
Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Youngsik Hwang
Dong-Young Lim
AI4CE
75
2
0
27 Sep 2024
Deep Learning without Global Optimization by Random Fourier Neural Networks
Owen Davis
Gianluca Geraci
Mohammad Motamed
BDL
70
0
0
16 Jul 2024
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
104
0
0
10 Jun 2024
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Rui Zhang
Qi Meng
Rongchan Zhu
Yue Wang
Wenlei Shi
Shihua Zhang
Zhi-Ming Ma
Tie-Yan Liu
DiffM
AI4CE
80
5
0
10 Feb 2023
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
79
292
0
13 Jan 2020
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
68
217
0
03 Dec 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
67
286
0
13 Feb 2019
Physics-informed deep generative models
Yibo Yang
P. Perdikaris
AI4CE
PINN
33
58
0
09 Dec 2018
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
75
356
0
09 Nov 2018
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
79
1,408
0
22 Jun 2018
1