ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.13197
  4. Cited By
Efficient Generation of Structured Objects with Constrained Adversarial
  Networks

Efficient Generation of Structured Objects with Constrained Adversarial Networks

26 July 2020
Luca Di Liello
Pierfrancesco Ardino
Jacopo Gobbi
Paolo Morettin
Stefano Teso
Andrea Passerini
    GAN
ArXivPDFHTML

Papers citing "Efficient Generation of Structured Objects with Constrained Adversarial Networks"

9 / 9 papers shown
Title
Independence Is Not an Issue in Neurosymbolic AI
Independence Is Not an Issue in Neurosymbolic AI
Håkan Karlsson Faronius
Pedro Zuidberg Dos Martires
68
0
0
10 Apr 2025
AI-Generated Content (AIGC) for Various Data Modalities: A Survey
AI-Generated Content (AIGC) for Various Data Modalities: A Survey
Lin Geng Foo
Hossein Rahmani
Jing Liu
97
31
0
27 Aug 2023
Neural Probabilistic Logic Programming in DeepProbLog
Neural Probabilistic Logic Programming in DeepProbLog
Robin Manhaeve
Sebastijan Dumancic
Angelika Kimmig
T. Demeester
Luc de Raedt
NAI
48
550
0
18 Jul 2019
Evolving Mario Levels in the Latent Space of a Deep Convolutional
  Generative Adversarial Network
Evolving Mario Levels in the Latent Space of a Deep Convolutional Generative Adversarial Network
Vanessa Volz
Jacob Schrum
Jialin Liu
Simon Lucas
Adam M. Smith
S. Risi
GAN
80
232
0
02 May 2018
Objective-Reinforced Generative Adversarial Networks (ORGAN) for
  Sequence Generation Models
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
G. L. Guimaraes
Benjamín Sánchez-Lengeling
Carlos Outeiral
Pedro Luis Cunha Farias
Alán Aspuru-Guzik
GAN
46
523
0
30 May 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
103
2,911
0
07 Oct 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
275
8,999
0
10 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
31
1,648
0
02 Jun 2016
A Knowledge Compilation Map
A Knowledge Compilation Map
Adnan Darwiche
Pierre Marquis
40
948
0
09 Jun 2011
1