ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.08194
19
541

Neural Probabilistic Logic Programming in DeepProbLog

18 July 2019
Robin Manhaeve
Sebastijan Dumancic
Angelika Kimmig
T. Demeester
Luc de Raedt
    NAI
ArXivPDFHTML
Abstract

We introduce DeepProbLog, a neural probabilistic logic programming language that incorporates deep learning by means of neural predicates. We show how existing inference and learning techniques of the underlying probabilistic logic programming language ProbLog can be adapted for the new language. We theoretically and experimentally demonstrate that DeepProbLog supports (i) both symbolic and subsymbolic representations and inference, (ii) program induction, (iii) probabilistic (logic) programming, and (iv) (deep) learning from examples. To the best of our knowledge, this work is the first to propose a framework where general-purpose neural networks and expressive probabilistic-logical modeling and reasoning are integrated in a way that exploits the full expressiveness and strengths of both worlds and can be trained end-to-end based on examples.

View on arXiv
Comments on this paper