ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.11901
10
107

Weakly Supervised 3D Object Detection from Lidar Point Cloud

23 July 2020
Qinghao Meng
Wenguan Wang
Tianfei Zhou
Jianbing Shen
Luc Van Gool
Dengxin Dai
    3DPC
ArXivPDFHTML
Abstract

It is laborious to manually label point cloud data for training high-quality 3D object detectors. This work proposes a weakly supervised approach for 3D object detection, only requiring a small set of weakly annotated scenes, associated with a few precisely labeled object instances. This is achieved by a two-stage architecture design. Stage-1 learns to generate cylindrical object proposals under weak supervision, i.e., only the horizontal centers of objects are click-annotated on bird's view scenes. Stage-2 learns to refine the cylindrical proposals to get cuboids and confidence scores, using a few well-labeled object instances. Using only 500 weakly annotated scenes and 534 precisely labeled vehicle instances, our method achieves 85-95% the performance of current top-leading, fully supervised detectors (which require 3, 712 exhaustively and precisely annotated scenes with 15, 654 instances). More importantly, with our elaborately designed network architecture, our trained model can be applied as a 3D object annotator, allowing both automatic and active working modes. The annotations generated by our model can be used to train 3D object detectors with over 94% of their original performance (under manually labeled data). Our experiments also show our model's potential in boosting performance given more training data. Above designs make our approach highly practical and introduce new opportunities for learning 3D object detection with reduced annotation burden.

View on arXiv
Comments on this paper