ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.11693
  4. Cited By
Robust Machine Learning via Privacy/Rate-Distortion Theory

Robust Machine Learning via Privacy/Rate-Distortion Theory

22 July 2020
Ye Wang
Shuchin Aeron
Adnan Siraj Rakin
T. Koike-Akino
P. Moulin
    OOD
ArXivPDFHTML

Papers citing "Robust Machine Learning via Privacy/Rate-Distortion Theory"

21 / 21 papers shown
Title
Generalised Lipschitz Regularisation Equals Distributional Robustness
Generalised Lipschitz Regularisation Equals Distributional Robustness
Zac Cranko
Zhan Shi
Xinhua Zhang
Richard Nock
Simon Kornblith
OOD
70
21
0
11 Feb 2020
Fooling automated surveillance cameras: adversarial patches to attack
  person detection
Fooling automated surveillance cameras: adversarial patches to attack person detection
Simen Thys
W. V. Ranst
Toon Goedemé
AAML
104
569
0
18 Apr 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
71
211
0
21 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
141
2,038
0
08 Feb 2019
Certified Adversarial Robustness with Additive Noise
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
91
348
0
10 Sep 2018
Scaling provable adversarial defenses
Scaling provable adversarial defenses
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
76
448
0
31 May 2018
Robustness May Be at Odds with Accuracy
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
99
1,778
0
30 May 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
211
2,147
0
01 Mar 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
94
934
0
09 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
216
3,185
0
01 Feb 2018
Privacy-Preserving Adversarial Networks
Privacy-Preserving Adversarial Networks
Ardhendu Shekhar Tripathy
Ye Wang
Prakash Ishwar
PICV
55
84
0
19 Dec 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
301
12,063
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
118
1,857
0
20 May 2017
Maximum Resilience of Artificial Neural Networks
Maximum Resilience of Artificial Neural Networks
Chih-Hong Cheng
Georg Nührenberg
Harald Ruess
AAML
99
284
0
28 Apr 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
315
1,867
0
03 Feb 2017
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
133
2,527
0
26 Oct 2016
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
211
943
0
21 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
258
8,550
0
16 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
534
5,897
0
08 Jul 2016
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
268
14,912
1
21 Dec 2013
Privacy Against Statistical Inference
Privacy Against Statistical Inference
Flavio du Pin Calmon
N. Fawaz
FedML
135
346
0
08 Oct 2012
1