Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.11693
Cited By
Robust Machine Learning via Privacy/Rate-Distortion Theory
22 July 2020
Ye Wang
Shuchin Aeron
Adnan Siraj Rakin
T. Koike-Akino
P. Moulin
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Machine Learning via Privacy/Rate-Distortion Theory"
20 / 20 papers shown
Title
Generalised Lipschitz Regularisation Equals Distributional Robustness
Zac Cranko
Zhan Shi
Xinhua Zhang
Richard Nock
Simon Kornblith
OOD
70
21
0
11 Feb 2020
Fooling automated surveillance cameras: adversarial patches to attack person detection
Simen Thys
W. V. Ranst
Toon Goedemé
AAML
104
569
0
18 Apr 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
70
211
0
21 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
134
2,036
0
08 Feb 2019
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
91
348
0
10 Sep 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
93
1,778
0
30 May 2018
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
209
2,146
0
01 Mar 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
92
932
0
09 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
212
3,184
0
01 Feb 2018
Privacy-Preserving Adversarial Networks
Ardhendu Shekhar Tripathy
Ye Wang
Prakash Ishwar
PICV
55
84
0
19 Dec 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
294
12,060
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
118
1,857
0
20 May 2017
Maximum Resilience of Artificial Neural Networks
Chih-Hong Cheng
Georg Nührenberg
Harald Ruess
AAML
92
284
0
28 Apr 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
305
1,865
0
03 Feb 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
133
2,527
0
26 Oct 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
204
943
0
21 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
254
8,550
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
524
5,897
0
08 Jul 2016
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
261
14,912
1
21 Dec 2013
Privacy Against Statistical Inference
Flavio du Pin Calmon
N. Fawaz
FedML
135
346
0
08 Oct 2012
1