ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06823
  4. Cited By
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users

Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users

14 July 2020
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
    OOD
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users"

26 / 76 papers shown
Title
Deep Learning: A Bayesian Perspective
Deep Learning: A Bayesian Perspective
Nicholas G. Polson
Vadim Sokolov
BDL
70
117
0
01 Jun 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
32
594
0
13 Apr 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
250
4,667
0
15 Mar 2017
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Yingzhen Li
Y. Gal
UQCV
BDL
127
198
0
08 Mar 2017
Deep Bayesian Active Learning with Image Data
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDL
UQCV
35
1,717
0
08 Mar 2017
On Loss Functions for Deep Neural Networks in Classification
On Loss Functions for Deep Neural Networks in Classification
Katarzyna Janocha
Wojciech M. Czarnecki
UQCV
50
549
0
18 Feb 2017
Deep Probabilistic Programming
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
52
193
0
13 Jan 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
451
5,748
0
05 Dec 2016
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
241
4,612
0
10 Nov 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
88
3,420
0
07 Oct 2016
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Hao Wang
Dit-Yan Yeung
BDL
34
225
0
24 Aug 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
204
10,412
0
21 Jul 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
159
4,748
0
04 Jan 2016
Bayesian Dark Knowledge
Bayesian Dark Knowledge
Masashi Sugiyama
Vivek Rathod
R. Garnett
Max Welling
BDL
UQCV
43
258
0
14 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
135
1,500
0
08 Jun 2015
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
425
9,233
0
06 Jun 2015
On Markov chain Monte Carlo methods for tall data
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
56
276
0
11 May 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
153
19,448
0
09 Mar 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
57
940
0
18 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
577
149,474
0
22 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
128
14,831
1
21 Dec 2013
On Information Regularization
On Information Regularization
Adrian Corduneanu
Tommi Jaakkola
43
88
0
19 Oct 2012
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
163
2,605
0
29 Jun 2012
Multi-column Deep Neural Networks for Image Classification
Multi-column Deep Neural Networks for Image Classification
D. Ciresan
U. Meier
Jürgen Schmidhuber
74
3,935
0
13 Feb 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
123
4,275
0
18 Nov 2011
Previous
12