ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.04542
  4. Cited By
Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive
  Physics Informed Neural Networks

Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks

9 July 2020
Colby Wight
Jia Zhao
ArXivPDFHTML

Papers citing "Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks"

36 / 36 papers shown
Title
Learning and Transferring Physical Models through Derivatives
Learning and Transferring Physical Models through Derivatives
Alessandro Trenta
Andrea Cossu
Davide Bacciu
AI4CE
39
0
0
02 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
81
0
0
25 Apr 2025
Solving 2-D Helmholtz equation in the rectangular, circular, and elliptical domains using neural networks
Solving 2-D Helmholtz equation in the rectangular, circular, and elliptical domains using neural networks
D. Veerababu
Prasanta K. Ghosh
73
0
0
26 Mar 2025
Machine learning for modelling unstructured grid data in computational physics: a review
Machine learning for modelling unstructured grid data in computational physics: a review
Sibo Cheng
Marc Bocquet
Weiping Ding
Tobias S. Finn
Rui Fu
...
Yong Zeng
Mingrui Zhang
Hao Zhou
Kewei Zhu
Rossella Arcucci
PINN
AI4CE
114
0
0
13 Feb 2025
Learn Sharp Interface Solution by Homotopy Dynamics
Learn Sharp Interface Solution by Homotopy Dynamics
Chuqi Chen
Yahong Yang
Yang Xiang
Wenrui Hao
ODL
62
1
0
01 Feb 2025
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
32
2
0
04 Oct 2024
An Advanced Physics-Informed Neural Operator for Comprehensive Design
  Optimization of Highly-Nonlinear Systems: An Aerospace Composites Processing
  Case Study
An Advanced Physics-Informed Neural Operator for Comprehensive Design Optimization of Highly-Nonlinear Systems: An Aerospace Composites Processing Case Study
Milad Ramezankhani
A. Deodhar
Rishi Parekh
Dagnachew Birru
AI4CE
50
3
0
20 Jun 2024
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
R. Mattey
Susanta Ghosh
AI4CE
43
1
0
09 May 2024
Unveiling the optimization process of Physics Informed Neural Networks:
  How accurate and competitive can PINNs be?
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Label Propagation Training Schemes for Physics-Informed Neural Networks
  and Gaussian Processes
Label Propagation Training Schemes for Physics-Informed Neural Networks and Gaussian Processes
Ming Zhong
Dehao Liu
Raymundo Arroyave
U. Braga-Neto
AI4CE
SSL
26
1
0
08 Apr 2024
Binary structured physics-informed neural networks for solving equations
  with rapidly changing solutions
Binary structured physics-informed neural networks for solving equations with rapidly changing solutions
Yanzhi Liu
Ruifan Wu
Ying Jiang
PINN
26
2
0
23 Jan 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
31
17
0
05 Jan 2024
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for
  Machine Learning and Process-based Hydrology
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology
Qingsong Xu
Yilei Shi
Jonathan Bamber
Ye Tuo
Ralf Ludwig
Xiao Xiang Zhu
AI4CE
20
10
0
08 Oct 2023
Learning Specialized Activation Functions for Physics-informed Neural
  Networks
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
16
12
0
08 Aug 2023
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
Liwei Lu
Hailong Guo
Xueqing Yang
Yi Zhu
AI4CE
23
6
0
06 Jul 2023
Residual-based attention and connection to information bottleneck theory
  in PINNs
Residual-based attention and connection to information bottleneck theory in PINNs
Sokratis J. Anagnostopoulos
Juan Diego Toscano
Nikos Stergiopulos
George Karniadakis
27
20
0
01 Jul 2023
GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for
  PINNs
GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for PINNs
Yuling Jiao
Dingwei Li
Xiliang Lu
J. Yang
Cheng Yuan
34
9
0
28 Mar 2023
GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward
  non-intrusive Meta-learning of parametric PDEs
GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs
Yanlai Chen
Shawn Koohy
PINN
AI4CE
37
24
0
27 Mar 2023
Neural tangent kernel analysis of PINN for advection-diffusion equation
Neural tangent kernel analysis of PINN for advection-diffusion equation
M. Saadat
B. Gjorgiev
L. Das
G. Sansavini
35
0
0
21 Nov 2022
Physics-Informed Neural Networks for Shell Structures
Physics-Informed Neural Networks for Shell Structures
Jan-Hendrik Bastek
D. Kochmann
AI4CE
18
51
0
26 Jul 2022
A comprehensive study of non-adaptive and residual-based adaptive
  sampling for physics-informed neural networks
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
32
353
0
21 Jul 2022
Is $L^2$ Physics-Informed Loss Always Suitable for Training
  Physics-Informed Neural Network?
Is L2L^2L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
Chuwei Wang
Shanda Li
Di He
Liwei Wang
AI4CE
PINN
31
28
0
04 Jun 2022
Lagrangian PINNs: A causality-conforming solution to failure modes of
  physics-informed neural networks
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
R. Mojgani
Maciej Balajewicz
Pedram Hassanzadeh
PINN
33
45
0
05 May 2022
Improved Training of Physics-Informed Neural Networks with Model
  Ensembles
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Katsiaryna Haitsiukevich
Alexander Ilin
PINN
39
23
0
11 Apr 2022
On the Role of Fixed Points of Dynamical Systems in Training
  Physics-Informed Neural Networks
On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
41
17
0
25 Mar 2022
Respecting causality is all you need for training physics-informed
  neural networks
Respecting causality is all you need for training physics-informed neural networks
Sizhuang He
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
49
199
0
14 Mar 2022
Physics-informed neural networks for solving parametric magnetostatic
  problems
Physics-informed neural networks for solving parametric magnetostatic problems
Andrés Beltrán-Pulido
Ilias Bilionis
D. Aliprantis
30
34
0
08 Feb 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning
Multi-Objective Loss Balancing for Physics-Informed Deep Learning
Rafael Bischof
M. Kraus
PINN
AI4CE
33
92
0
19 Oct 2021
Physics informed neural networks for continuum micromechanics
Physics informed neural networks for continuum micromechanics
Alexander Henkes
Henning Wessels
R. Mahnken
PINN
AI4CE
16
139
0
14 Oct 2021
Physics-informed neural network simulation of multiphase poroelasticity
  using stress-split sequential training
Physics-informed neural network simulation of multiphase poroelasticity using stress-split sequential training
E. Haghighat
Daniel Amini
R. Juanes
PINN
AI4CE
23
95
0
06 Oct 2021
Variational Physics Informed Neural Networks: the role of quadratures
  and test functions
Variational Physics Informed Neural Networks: the role of quadratures and test functions
S. Berrone
C. Canuto
Moreno Pintore
31
41
0
05 Sep 2021
IDRLnet: A Physics-Informed Neural Network Library
IDRLnet: A Physics-Informed Neural Network Library
Wei Peng
Jun Zhang
Weien Zhou
Xiaoyu Zhao
W. Yao
Xiaoqian Chen
PINN
AI4CE
35
15
0
09 Jul 2021
Long-time integration of parametric evolution equations with
  physics-informed DeepONets
Long-time integration of parametric evolution equations with physics-informed DeepONets
Sizhuang He
P. Perdikaris
AI4CE
24
117
0
09 Jun 2021
An overview on deep learning-based approximation methods for partial
  differential equations
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Discovery of Governing Equations with Recursive Deep Neural Networks
Discovery of Governing Equations with Recursive Deep Neural Networks
Jia Zhao
Jarrod Mau
PINN
32
6
0
24 Sep 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention
  Mechanism
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
28
444
0
07 Sep 2020
1