Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.04504
Cited By
v1
v2 (latest)
Learning Differential Equations that are Easy to Solve
9 July 2020
Jacob Kelly
J. Bettencourt
Matthew J. Johnson
David Duvenaud
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Differential Equations that are Easy to Solve"
24 / 24 papers shown
Title
Building symmetries into data-driven manifold dynamics models for complex flows: application to two-dimensional Kolmogorov flow
Carlos E. Pérez De Jesús
Alec J. Linot
Michael D. Graham
AI4CE
81
2
0
15 Dec 2023
Hypersolvers: Toward Fast Continuous-Depth Models
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
BDL
AI4CE
54
47
0
19 Jul 2020
Interpolation between Residual and Non-Residual Networks
Zonghan Yang
Yang Liu
Chenglong Bao
Zuoqiang Shi
47
13
0
10 Jun 2020
OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport
Derek Onken
Samy Wu Fung
Xingjian Li
Lars Ruthotto
OT
62
161
0
29 May 2020
Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression and Continuous Normalizing Flows
Derek Onken
Lars Ruthotto
BDL
75
54
0
27 May 2020
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
111
481
0
18 May 2020
Neural Differential Equations for Single Image Super-resolution
Teven Le Scao
31
2
0
02 May 2020
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
183
49
0
27 Feb 2020
Dissecting Neural ODEs
Stefano Massaroli
Michael Poli
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
99
204
0
19 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
64
301
0
07 Feb 2020
A Machine Learning Framework for Solving High-Dimensional Mean Field Game and Mean Field Control Problems
Lars Ruthotto
Stanley Osher
Wuchen Li
L. Nurbekyan
Samy Wu Fung
AI4CE
120
220
0
04 Dec 2019
Neural Ordinary Differential Equations for Semantic Segmentation of Individual Colon Glands
H. Pinckaers
G. Litjens
SSeg
MedIm
113
36
0
23 Oct 2019
On Robustness of Neural Ordinary Differential Equations
Hanshu Yan
Jiawei Du
Vincent Y. F. Tan
Jiashi Feng
OOD
82
141
0
12 Oct 2019
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDa
CML
AI4TS
96
299
0
29 May 2019
Augmented Neural ODEs
Emilien Dupont
Arnaud Doucet
Yee Whye Teh
BDL
150
632
0
02 Apr 2019
DiffEqFlux.jl - A Julia Library for Neural Differential Equations
Christopher Rackauckas
Mike Innes
Yingbo Ma
J. Bettencourt
Lyndon White
Vaibhav Dixit
69
119
0
06 Feb 2019
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
154
881
0
02 Oct 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
429
5,157
0
19 Jun 2018
Deep Neural Networks Motivated by Partial Differential Equations
Lars Ruthotto
E. Haber
AI4CE
124
491
0
12 Apr 2018
Sensitivity and Generalization in Neural Networks: an Empirical Study
Roman Novak
Yasaman Bahri
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
AAML
95
441
0
23 Feb 2018
Multi-level Residual Networks from Dynamical Systems View
B. Chang
Lili Meng
E. Haber
Frederick Tung
David Begert
79
172
0
27 Oct 2017
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
215
1,360
0
19 May 2017
Maximum a Posteriori State Path Estimation: Discretization Limits and their Interpretation
D. A. Dutra
B. Teixeira
L. A. Aguirre
37
32
0
20 Mar 2014
Reproducing kernel Hilbert spaces of Gaussian priors
Van der Vaart
V. Zanten
94
224
0
21 May 2008
1