ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.04470
  4. Cited By
Finite mixture models do not reliably learn the number of components

Finite mixture models do not reliably learn the number of components

8 July 2020
Diana Cai
Trevor Campbell
Tamara Broderick
ArXivPDFHTML

Papers citing "Finite mixture models do not reliably learn the number of components"

20 / 20 papers shown
Title
Consistency of mixture models with a prior on the number of components
Consistency of mixture models with a prior on the number of components
Jeffrey W. Miller
54
72
0
06 May 2022
Extended Stochastic Block Models with Application to Criminal Networks
Extended Stochastic Block Models with Application to Criminal Networks
Sirio Legramanti
T. Rigon
Daniele Durante
David B. Dunson
42
22
0
16 Jul 2020
A generalized Bayes framework for probabilistic clustering
A generalized Bayes framework for probabilistic clustering
T. Rigon
A. Herring
David B. Dunson
22
25
0
09 Jun 2020
Robust Inference and Model Criticism Using Bagged Posteriors
Robust Inference and Model Criticism Using Bagged Posteriors
Jonathan H. Huggins
Jeffrey W. Miller
69
15
0
15 Dec 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
54
105
0
03 Apr 2019
On posterior contraction of parameters and interpretability in Bayesian
  mixture modeling
On posterior contraction of parameters and interpretability in Bayesian mixture modeling
Aritra Guha
Nhat Ho
X. Nguyen
40
56
0
15 Jan 2019
Principles of Bayesian Inference using General Divergence Criteria
Principles of Bayesian Inference using General Divergence Criteria
Jack Jewson
Jim Q. Smith
Chris Holmes
20
88
0
26 Feb 2018
Identifiability of Nonparametric Mixture Models and Bayes Optimal
  Clustering
Identifiability of Nonparametric Mixture Models and Bayes Optimal Clustering
Bryon Aragam
Chen Dan
Eric Xing
Pradeep Ravikumar
36
30
0
12 Feb 2018
Flexible Models for Microclustering with Application to Entity
  Resolution
Flexible Models for Microclustering with Application to Entity Resolution
Giacomo Zanella
Brenda Betancourt
Hanna M. Wallach
Jeffrey W. Miller
Abbas Zaidi
Beka Steorts
30
42
0
31 Oct 2016
Robust Probabilistic Modeling with Bayesian Data Reweighting
Robust Probabilistic Modeling with Bayesian Data Reweighting
Yixin Wang
A. Kucukelbir
David M. Blei
OOD
NoLa
25
12
0
13 Jun 2016
Probabilistic community detection with unknown number of communities
Probabilistic community detection with unknown number of communities
J. Geng
A. Bhattacharya
D. Pati
63
75
0
25 Feb 2016
Inconsistency of Bayesian Inference for Misspecified Linear Models, and
  a Proposal for Repairing It
Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It
Peter Grünwald
T. V. Ommen
69
265
0
11 Dec 2014
On Posterior Concentration in Misspecified Models
On Posterior Concentration in Misspecified Models
R. Ramamoorthi
Karthik Sriram
Ryan Martin
52
39
0
17 Dec 2013
On the Bayes-optimality of F-measure maximizers
On the Bayes-optimality of F-measure maximizers
Willem Waegeman
Krzysztof Dembczyñski
Arkadiusz Jachnik
Weiwei Cheng
Eyke Hullermeier
346
105
0
17 Oct 2013
Inconsistency of Pitman-Yor process mixtures for the number of
  components
Inconsistency of Pitman-Yor process mixtures for the number of components
Jeffrey W. Miller
M. Harrison
50
101
0
30 Aug 2013
A General Framework for Updating Belief Distributions
A General Framework for Updating Belief Distributions
Pier Giovanni Bissiri
Chris Holmes
S. Walker
92
472
0
27 Jun 2013
A simple example of Dirichlet process mixture inconsistency for the
  number of components
A simple example of Dirichlet process mixture inconsistency for the number of components
Jeffrey W. Miller
M. Harrison
42
158
0
12 Jan 2013
Convergence of latent mixing measures in finite and infinite mixture
  models
Convergence of latent mixing measures in finite and infinite mixture models
X. Nguyen
74
183
0
15 Sep 2011
Bayesian finite mixtures: a note on prior specification and posterior
  computation
Bayesian finite mixtures: a note on prior specification and posterior computation
Agostino Nobile
81
21
0
03 Nov 2007
Kullback Leibler property of kernel mixture priors in Bayesian density
  estimation
Kullback Leibler property of kernel mixture priors in Bayesian density estimation
Yuefeng Wu
S. Ghosal
89
108
0
15 Oct 2007
1