Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.04466
Cited By
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
8 July 2020
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks"
29 / 29 papers shown
Title
Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
Meet P. Vadera
B. Jalaeian
Benjamin M. Marlin
BDL
FedML
UQCV
43
20
0
16 May 2020
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
Michael W. Dusenberry
Ghassen Jerfel
Yeming Wen
Yi-An Ma
Jasper Snoek
Katherine A. Heller
Balaji Lakshminarayanan
Dustin Tran
UQCV
BDL
47
209
0
14 May 2020
Assessing the Adversarial Robustness of Monte Carlo and Distillation Methods for Deep Bayesian Neural Network Classification
Meet P. Vadera
Satya Narayan Shukla
B. Jalaeian
Benjamin M. Marlin
AAML
BDL
31
6
0
07 Feb 2020
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
49
93
0
14 Oct 2019
Introducing an Explicit Symplectic Integration Scheme for Riemannian Manifold Hamiltonian Monte Carlo
Adam D. Cobb
A. G. Baydin
Andrew Markham
Stephen J. Roberts
40
32
0
14 Oct 2019
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
58
144
0
17 Jul 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
137
1,677
0
06 Jun 2019
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
54
232
0
30 Apr 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
105
3,399
0
28 Mar 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
59
275
0
11 Feb 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
74
801
0
07 Feb 2019
Deep Learning for Classical Japanese Literature
Tarin Clanuwat
Mikel Bober-Irizar
A. Kitamoto
Alex Lamb
Kazuaki Yamamoto
David R Ha
68
705
0
03 Dec 2018
Adversarial Distillation of Bayesian Neural Network Posteriors
Kuan-Chieh Wang
Paul Vicol
James Lucas
Li Gu
Roger C. Grosse
R. Zemel
UQCV
GAN
AAML
BDL
34
56
0
27 Jun 2018
Loss-Calibrated Approximate Inference in Bayesian Neural Networks
Adam D. Cobb
Stephen J. Roberts
Y. Gal
BDL
UQCV
42
43
0
10 May 2018
Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi-Velez
Steffen Udluft
UQCV
PER
BDL
UD
46
27
0
19 Oct 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
157
8,807
0
25 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
225
11,962
0
19 Jun 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
193
5,774
0
14 Jun 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
98
3,420
0
07 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
163
8,513
0
16 Aug 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
254
7,951
0
23 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Bayesian Dark Knowledge
Masashi Sugiyama
Vivek Rathod
R. Garnett
Max Welling
BDL
UQCV
48
258
0
14 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
457
9,233
0
06 Jun 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
159
18,922
0
20 Dec 2014
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
69
902
0
17 Feb 2014
Expectation Propagation for approximate Bayesian inference
T. Minka
101
1,906
0
10 Jan 2013
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
191
2,605
0
29 Jun 2012
Elliptical slice sampling
Iain Murray
Ryan P. Adams
D. MacKay
111
465
0
31 Dec 2009
1