ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.02871
  4. Cited By
DART: Open-Domain Structured Data Record to Text Generation
v1v2 (latest)

DART: Open-Domain Structured Data Record to Text Generation

6 July 2020
Linyong Nan
Dragomir R. Radev
Rui Zhang
Amrit Rau
Abhinand Sivaprasad
Chia-Hsuan Hsieh
Xiangru Tang
Aadit Vyas
Neha Verma
P. Krishna
Yangxiaokang Liu
Nadia Irwanto
Jessica Pan
Faiaz Rahman
A. Zaidi
Murori Mutuma
Yasin Tarabar
Ankit Gupta
Tao Yu
Y. Tan
Xi Lin
Caiming Xiong
R. Socher
Nazneen Rajani
ArXiv (abs)PDFHTMLGithub (153★)

Papers citing "DART: Open-Domain Structured Data Record to Text Generation"

22 / 72 papers shown
Title
Findings of the E2E NLG Challenge
Findings of the E2E NLG Challenge
Ondrej Dusek
Jekaterina Novikova
Verena Rieser
78
115
0
02 Oct 2018
Transforming Question Answering Datasets Into Natural Language Inference
  Datasets
Transforming Question Answering Datasets Into Natural Language Inference Datasets
Dorottya Demszky
Kelvin Guu
Percy Liang
72
161
0
09 Sep 2018
Describing a Knowledge Base
Describing a Knowledge Base
Qingyun Wang
Xiaoman Pan
Lifu Huang
Boliang Zhang
Zhiying Jiang
Heng Ji
Kevin Knight
60
54
0
06 Sep 2018
Data-to-Text Generation with Content Selection and Planning
Data-to-Text Generation with Content Selection and Planning
Ratish Puduppully
Li Dong
Mirella Lapata
65
302
0
03 Sep 2018
Table-to-Text: Describing Table Region with Natural Language
Table-to-Text: Describing Table Region with Natural Language
Junwei Bao
Duyu Tang
Nan Duan
Zhao Yan
Yuanhua Lv
M. Zhou
Tiejun Zhao
LMTD
51
100
0
29 May 2018
Bootstrapping Generators from Noisy Data
Bootstrapping Generators from Noisy Data
Laura Perez-Beltrachini
Mirella Lapata
49
40
0
17 Apr 2018
Table-to-text Generation by Structure-aware Seq2seq Learning
Table-to-text Generation by Structure-aware Seq2seq Learning
Tianyu Liu
Kexiang Wang
Lei Sha
Baobao Chang
Zhifang Sui
LMTD
72
267
0
27 Nov 2017
Neural Wikipedian: Generating Textual Summaries from Knowledge Base
  Triples
Neural Wikipedian: Generating Textual Summaries from Knowledge Base Triples
Pavlos Vougiouklis
Hady ElSahar
Lucie-Aimée Kaffee
Christophe Gravier
F. Laforest
Jonathon S. Hare
Elena Simperl
50
69
0
01 Nov 2017
Order-Planning Neural Text Generation From Structured Data
Order-Planning Neural Text Generation From Structured Data
Lei Sha
Lili Mou
Tianyu Liu
Pascal Poupart
Sujian Li
Baobao Chang
Zhifang Sui
LMTD
81
114
0
01 Sep 2017
Seq2SQL: Generating Structured Queries from Natural Language using
  Reinforcement Learning
Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning
Victor Zhong
Caiming Xiong
R. Socher
RALM
100
1,196
0
31 Aug 2017
Challenges in Data-to-Document Generation
Challenges in Data-to-Document Generation
Sam Wiseman
Stuart M. Shieber
Alexander M. Rush
175
589
0
25 Jul 2017
Why We Need New Evaluation Metrics for NLG
Why We Need New Evaluation Metrics for NLG
Jekaterina Novikova
Ondrej Dusek
Amanda Cercas Curry
Verena Rieser
84
461
0
21 Jul 2017
The E2E Dataset: New Challenges For End-to-End Generation
The E2E Dataset: New Challenges For End-to-End Generation
Jekaterina Novikova
Ondrej Dusek
Verena Rieser
94
459
0
28 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
707
131,652
0
12 Jun 2017
AMR-to-text Generation with Synchronous Node Replacement Grammar
AMR-to-text Generation with Synchronous Node Replacement Grammar
Linfeng Song
Xiaochang Peng
Yue Zhang
Zhiguo Wang
D. Gildea
48
53
0
01 Feb 2017
Conditional Generation and Snapshot Learning in Neural Dialogue Systems
Conditional Generation and Snapshot Learning in Neural Dialogue Systems
Tsung-Hsien Wen
Milica Gasic
N. Mrksic
L. Rojas-Barahona
Pei-hao Su
Stefan Ultes
David Vandyke
S. Young
57
79
0
10 Jun 2016
What to talk about and how? Selective Generation using LSTMs with
  Coarse-to-Fine Alignment
What to talk about and how? Selective Generation using LSTMs with Coarse-to-Fine Alignment
Hongyuan Mei
Joey Tianyi Zhou
Matthew R. Walter
66
289
0
02 Sep 2015
Semantically Conditioned LSTM-based Natural Language Generation for
  Spoken Dialogue Systems
Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems
Tsung-Hsien Wen
Milica Gasic
N. Mrksic
Pei-hao Su
David Vandyke
S. Young
101
949
0
07 Aug 2015
Compositional Semantic Parsing on Semi-Structured Tables
Compositional Semantic Parsing on Semi-Structured Tables
Panupong Pasupat
Percy Liang
CoGeLMTD
117
789
0
03 Aug 2015
Sequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural Networks
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
AIMat
437
20,568
0
10 Sep 2014
Neural Machine Translation by Jointly Learning to Align and Translate
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
560
27,311
0
01 Sep 2014
Distributed Representations of Words and Phrases and their
  Compositionality
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov
Ilya Sutskever
Kai Chen
G. Corrado
J. Dean
NAIOCL
397
33,550
0
16 Oct 2013
Previous
12