Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.02617
Cited By
v1
v2 (latest)
Understanding and Improving Fast Adversarial Training
6 July 2020
Maksym Andriushchenko
Nicolas Flammarion
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (95★)
Papers citing
"Understanding and Improving Fast Adversarial Training"
43 / 193 papers shown
Title
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
108
59
0
24 Nov 2021
Local Linearity and Double Descent in Catastrophic Overfitting
Varun Sivashankar
Nikil Selvam
AAML
23
0
0
21 Nov 2021
Robust and Accurate Object Detection via Self-Knowledge Distillation
Weipeng Xu
Pengzhi Chu
Renhao Xie
Xiongziyan Xiao
Hongcheng Huang
AAML
ObjD
66
4
0
14 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
81
18
0
09 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
93
14
0
02 Nov 2021
Improving Local Effectiveness for Global robust training
Jingyue Lu
M. P. Kumar
AAML
49
0
0
26 Oct 2021
DI-AA: An Interpretable White-box Attack for Fooling Deep Neural Networks
Yixiang Wang
Jiqiang Liu
Xiaolin Chang
Jianhua Wang
Ricardo J. Rodríguez
AAML
93
31
0
14 Oct 2021
Boosting Fast Adversarial Training with Learnable Adversarial Initialization
Xiaojun Jia
Yong Zhang
Baoyuan Wu
Jue Wang
Xiaochun Cao
AAML
102
55
0
11 Oct 2021
Calibrated Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
115
3
0
01 Oct 2021
BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining
Weizhe Hua
Yichi Zhang
Chuan Guo
Zhiru Zhang
G. E. Suh
OOD
103
16
0
29 Sep 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
137
16
0
20 Sep 2021
Adaptive perturbation adversarial training: based on reinforcement learning
Zhi-pin Nie
Ying Lin
Sp Ren
Lan Zhang
AAML
35
1
0
30 Aug 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
162
242
0
01 Aug 2021
Single-Step Adversarial Training for Semantic Segmentation
D. Wiens
Barbara Hammer
SSeg
AAML
66
1
0
30 Jun 2021
Multi-stage Optimization based Adversarial Training
Xiaosen Wang
Chuanbiao Song
Liwei Wang
Kun He
AAML
31
5
0
26 Jun 2021
Probabilistic Margins for Instance Reweighting in Adversarial Training
Qizhou Wang
Feng Liu
Bo Han
Tongliang Liu
Chen Gong
Gang Niu
Mingyuan Zhou
Masashi Sugiyama
AAML
83
65
0
15 Jun 2021
RobustNav: Towards Benchmarking Robustness in Embodied Navigation
Prithvijit Chattopadhyay
Judy Hoffman
Roozbeh Mottaghi
Aniruddha Kembhavi
84
55
0
08 Jun 2021
Concurrent Adversarial Learning for Large-Batch Training
Yong Liu
Xiangning Chen
Minhao Cheng
Cho-Jui Hsieh
Yang You
ODL
85
13
0
01 Jun 2021
Two Coupled Rejection Metrics Can Tell Adversarial Examples Apart
Tianyu Pang
Huishuai Zhang
Di He
Yinpeng Dong
Hang Su
Wei Chen
Jun Zhu
Tie-Yan Liu
AAML
45
18
0
31 May 2021
Deep Repulsive Prototypes for Adversarial Robustness
A. Serban
E. Poll
Joost Visser
OOD
52
3
0
26 May 2021
Understanding Catastrophic Overfitting in Adversarial Training
Peilin Kang
Seyed-Mohsen Moosavi-Dezfooli
AAML
63
16
0
06 May 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
105
67
0
09 Apr 2021
The art of defense: letting networks fool the attacker
Jinlai Zhang
Lyvjie Chen
Binbin Liu
Bojun Ouyang
Jihong Zhu
Minchi Kuang
Houqing Wang
Yanmei Meng
AAML
3DPC
78
16
0
07 Apr 2021
Reliably fast adversarial training via latent adversarial perturbation
Geon Yeong Park
Sang Wan Lee
AAML
73
28
0
04 Apr 2021
Domain Invariant Adversarial Learning
Matan Levi
Idan Attias
A. Kontorovich
AAML
OOD
122
11
0
01 Apr 2021
ZeroGrad : Mitigating and Explaining Catastrophic Overfitting in FGSM Adversarial Training
Zeinab Golgooni
Mehrdad Saberi
Masih Eskandar
M. Rohban
AAML
37
14
0
29 Mar 2021
Lagrangian Objective Function Leads to Improved Unforeseen Attack Generalization in Adversarial Training
Mohammad Azizmalayeri
M. Rohban
OOD
80
4
0
29 Mar 2021
Adversarial Feature Augmentation and Normalization for Visual Recognition
Tianlong Chen
Yu Cheng
Zhe Gan
Jianfeng Wang
Lijuan Wang
Zhangyang Wang
Jingjing Liu
AAML
ViT
71
19
0
22 Mar 2021
DAFAR: Defending against Adversaries by Feedback-Autoencoder Reconstruction
Haowen Liu
Ping Yi
Hsiao-Ying Lin
Jie Shi
Weidong Qiu
AAML
34
2
0
11 Mar 2021
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Fu Lee Wang
Yanghao Zhang
Yanbin Zheng
Wenjie Ruan
69
1
0
04 Mar 2021
On the effectiveness of adversarial training against common corruptions
Klim Kireev
Maksym Andriushchenko
Nicolas Flammarion
AAML
72
103
0
03 Mar 2021
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
97
47
0
20 Feb 2021
Robust Single-step Adversarial Training with Regularizer
Lehui Xie
Yaopeng Wang
Jianwei Yin
Ximeng Liu
AAML
51
1
0
05 Feb 2021
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
Bihan Wen
Qian Wang
AAML
192
496
0
02 Feb 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Theodoros Tsiligkaridis
Jay Roberts
AAML
206
11
0
22 Dec 2020
Using Feature Alignment Can Improve Clean Average Precision and Adversarial Robustness in Object Detection
Weipeng Xu
Hongcheng Huang
Shaoyou Pan
ObjD
62
7
0
08 Dec 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
87
8
0
03 Nov 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
355
707
0
19 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
121
48
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
73
331
0
07 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
134
112
0
05 Oct 2020
Efficient Robust Training via Backward Smoothing
Jinghui Chen
Yu Cheng
Zhe Gan
Quanquan Gu
Jingjing Liu
AAML
83
40
0
03 Oct 2020
Bag of Tricks for Adversarial Training
Tianyu Pang
Xiao Yang
Yinpeng Dong
Hang Su
Jun Zhu
AAML
90
270
0
01 Oct 2020
Previous
1
2
3
4