ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.15733
  4. Cited By
Two-Layer Neural Networks for Partial Differential Equations:
  Optimization and Generalization Theory

Two-Layer Neural Networks for Partial Differential Equations: Optimization and Generalization Theory

28 June 2020
Tao Luo
Haizhao Yang
ArXivPDFHTML

Papers citing "Two-Layer Neural Networks for Partial Differential Equations: Optimization and Generalization Theory"

17 / 17 papers shown
Title
Solving Nonlinear PDEs with Sparse Radial Basis Function Networks
Solving Nonlinear PDEs with Sparse Radial Basis Function Networks
Zihan Shao
Konstantin Pieper
Xiaochuan Tian
29
0
0
12 May 2025
Learn Sharp Interface Solution by Homotopy Dynamics
Learn Sharp Interface Solution by Homotopy Dynamics
Chuqi Chen
Yahong Yang
Yang Xiang
Wenrui Hao
ODL
57
1
0
01 Feb 2025
Approximation of Solution Operators for High-dimensional PDEs
Approximation of Solution Operators for High-dimensional PDEs
Nathan Gaby
Xiaojing Ye
19
0
0
18 Jan 2024
Approximation of Functionals by Neural Network without Curse of
  Dimensionality
Approximation of Functionals by Neural Network without Curse of Dimensionality
Yahong Yang
Yang Xiang
21
6
0
28 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic
  Equations via Gradient Descent
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
35
7
0
15 May 2022
Numerical Approximation of Partial Differential Equations by a Variable
  Projection Method with Artificial Neural Networks
Numerical Approximation of Partial Differential Equations by a Variable Projection Method with Artificial Neural Networks
S. Dong
Jielin Yang
37
17
0
24 Jan 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional
  Spaces
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
Wasserstein Generative Adversarial Uncertainty Quantification in
  Physics-Informed Neural Networks
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
35
28
0
30 Aug 2021
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
Ziang Chen
Jianfeng Lu
Yulong Lu
25
26
0
14 Jun 2021
Random feature neural networks learn Black-Scholes type PDEs without
  curse of dimensionality
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
Lukas Gonon
11
35
0
14 Jun 2021
A Priori Generalization Error Analysis of Two-Layer Neural Networks for
  Solving High Dimensional Schrödinger Eigenvalue Problems
A Priori Generalization Error Analysis of Two-Layer Neural Networks for Solving High Dimensional Schrödinger Eigenvalue Problems
Jianfeng Lu
Yulong Lu
31
29
0
04 May 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep
  Learning: Error Estimation
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
24
20
0
21 Mar 2021
Evolutional Deep Neural Network
Evolutional Deep Neural Network
Yifan Du
T. Zaki
16
68
0
18 Mar 2021
Reproducing Activation Function for Deep Learning
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
28
21
0
13 Jan 2021
A Priori Generalization Analysis of the Deep Ritz Method for Solving
  High Dimensional Elliptic Equations
A Priori Generalization Analysis of the Deep Ritz Method for Solving High Dimensional Elliptic Equations
Jianfeng Lu
Yulong Lu
Min Wang
23
37
0
05 Jan 2021
An overview on deep learning-based approximation methods for partial
  differential equations
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Neural Network Approximation: Three Hidden Layers Are Enough
Neural Network Approximation: Three Hidden Layers Are Enough
Zuowei Shen
Haizhao Yang
Shijun Zhang
19
115
0
25 Oct 2020
1