Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.14331
Cited By
A Theoretical Framework for Target Propagation
25 June 2020
Alexander Meulemans
Francesco S. Carzaniga
Johan A. K. Suykens
João Sacramento
Benjamin Grewe
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Theoretical Framework for Target Propagation"
24 / 24 papers shown
Title
Local Loss Optimization in the Infinite Width: Stable Parameterization of Predictive Coding Networks and Target Propagation
Satoki Ishikawa
Rio Yokota
Ryo Karakida
46
0
0
04 Nov 2024
Tight Stability, Convergence, and Robustness Bounds for Predictive Coding Networks
A. Mali
Tommaso Salvatori
Alexander Ororbia
37
0
0
07 Oct 2024
Contribute to balance, wire in accordance: Emergence of backpropagation from a simple, bio-plausible neuroplasticity rule
Xinhao Fan
S. P. Mysore
37
0
0
23 May 2024
Go beyond End-to-End Training: Boosting Greedy Local Learning with Context Supply
Chengting Yu
Fengzhao Zhang
Hanzhi Ma
Aili Wang
Er-ping Li
29
1
0
12 Dec 2023
Improving equilibrium propagation without weight symmetry through Jacobian homeostasis
Axel Laborieux
Friedemann Zenke
25
7
0
05 Sep 2023
Biologically-Motivated Learning Model for Instructed Visual Processing
R. Abel
S. Ullman
25
0
0
04 Jun 2023
Block-local learning with probabilistic latent representations
David Kappel
Khaleelulla Khan Nazeer
Cabrel Teguemne Fokam
Christian Mayr
Anand Subramoney
24
4
0
24 May 2023
Dual Propagation: Accelerating Contrastive Hebbian Learning with Dyadic Neurons
R. Høier
D. Staudt
Christopher Zach
31
11
0
02 Feb 2023
Is Bio-Inspired Learning Better than Backprop? Benchmarking Bio Learning vs. Backprop
Manas Gupta
Sarthak Ketanbhai Modi
Hang Zhang
Joon Hei Lee
J. Lim
27
7
0
09 Dec 2022
Predictive Coding beyond Gaussian Distributions
Luca Pinchetti
Tommaso Salvatori
Yordan Yordanov
Beren Millidge
Yuhang Song
Thomas Lukasiewicz
UQCV
BDL
32
11
0
07 Nov 2022
ATLAS: Universal Function Approximator for Memory Retention
H. V. Deventer
Anna Sergeevna Bosman
27
0
0
10 Aug 2022
A Theoretical Framework for Inference and Learning in Predictive Coding Networks
Beren Millidge
Yuhang Song
Tommaso Salvatori
Thomas Lukasiewicz
Rafal Bogacz
34
12
0
21 Jul 2022
Gradients without Backpropagation
A. G. Baydin
Barak A. Pearlmutter
Don Syme
Frank Wood
Philip Torr
38
66
0
17 Feb 2022
Towards Scaling Difference Target Propagation by Learning Backprop Targets
M. Ernoult
Fabrice Normandin
A. Moudgil
Sean Spinney
Eugene Belilovsky
Irina Rish
Blake A. Richards
Yoshua Bengio
19
28
0
31 Jan 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
43
23
0
28 Jan 2022
Target Propagation via Regularized Inversion
Vincent Roulet
Zaïd Harchaoui
BDL
AAML
27
4
0
02 Dec 2021
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
72
69
0
09 Nov 2021
Applications of the Free Energy Principle to Machine Learning and Neuroscience
Beren Millidge
DRL
22
7
0
30 Jun 2021
How to Train Your Wide Neural Network Without Backprop: An Input-Weight Alignment Perspective
Akhilan Boopathy
Ila Fiete
39
9
0
15 Jun 2021
Credit Assignment in Neural Networks through Deep Feedback Control
Alexander Meulemans
Matilde Tristany Farinha
Javier García Ordónez
Pau Vilimelis Aceituno
João Sacramento
Benjamin Grewe
31
35
0
15 Jun 2021
Training Deep Architectures Without End-to-End Backpropagation: A Survey on the Provably Optimal Methods
Shiyu Duan
José C. Príncipe
MQ
38
3
0
09 Jan 2021
Differentiable Programming à la Moreau
Vincent Roulet
Zaïd Harchaoui
23
5
0
31 Dec 2020
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
30
14
0
14 Nov 2020
Biological credit assignment through dynamic inversion of feedforward networks
William F. Podlaski
C. Machens
24
19
0
10 Jul 2020
1