ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13782
  4. Cited By
Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neural Networks

Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neural Networks

24 June 2020
Francis Williams
Matthew Trager
Joan Bruna
Denis Zorin
ArXivPDFHTML

Papers citing "Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neural Networks"

27 / 27 papers shown
Title
Fourier Features Let Networks Learn High Frequency Functions in Low
  Dimensional Domains
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
110
2,410
0
18 Jun 2020
Implicit Neural Representations with Periodic Activation Functions
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
118
2,543
0
17 Jun 2020
Deep Manifold Prior
Deep Manifold Prior
Matheus Gadelha
Rui Wang
Subhransu Maji
3DPC
AI4CE
30
16
0
08 Apr 2020
Kernel Operations on the GPU, with Autodiff, without Memory Overflows
Kernel Operations on the GPU, with Autodiff, without Memory Overflows
Benjamin Charlier
Jean Feydy
J. Glaunès
François-David Collin
G. Durif
36
176
0
27 Mar 2020
Deep Local Shapes: Learning Local SDF Priors for Detailed 3D
  Reconstruction
Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction
Rohan Chabra
J. E. Lenssen
Eddy Ilg
Tanner Schmidt
Julian Straub
S. Lovegrove
Richard Newcombe
62
462
0
24 Mar 2020
Implicit Geometric Regularization for Learning Shapes
Implicit Geometric Regularization for Learning Shapes
Amos Gropp
Lior Yariv
Niv Haim
Matan Atzmon
Y. Lipman
AI4CE
106
857
0
24 Feb 2020
VoronoiNet: General Functional Approximators with Local Support
VoronoiNet: General Functional Approximators with Local Support
Francis Williams
Daniele Panozzo
K. M. Yi
Andrea Tagliasacchi
41
15
0
08 Dec 2019
SAL: Sign Agnostic Learning of Shapes from Raw Data
SAL: Sign Agnostic Learning of Shapes from Raw Data
Matan Atzmon
Y. Lipman
3DPC
FedML
110
510
0
23 Nov 2019
BSP-Net: Generating Compact Meshes via Binary Space Partitioning
BSP-Net: Generating Compact Meshes via Binary Space Partitioning
Zhiqin Chen
Andrea Tagliasacchi
Hao Zhang
90
311
0
16 Nov 2019
A Function Space View of Bounded Norm Infinite Width ReLU Nets: The
  Multivariate Case
A Function Space View of Bounded Norm Infinite Width ReLU Nets: The Multivariate Case
Greg Ongie
Rebecca Willett
Daniel Soudry
Nathan Srebro
64
161
0
03 Oct 2019
CvxNet: Learnable Convex Decomposition
CvxNet: Learnable Convex Decomposition
Boyang Deng
Kyle Genova
S. Yazdani
Sofien Bouaziz
Geoffrey E. Hinton
Andrea Tagliasacchi
51
255
0
12 Sep 2019
Learning elementary structures for 3D shape generation and matching
Learning elementary structures for 3D shape generation and matching
Theo Deprelle
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
52
187
0
13 Aug 2019
Gradient Dynamics of Shallow Univariate ReLU Networks
Gradient Dynamics of Shallow Univariate ReLU Networks
Francis Williams
Matthew Trager
Claudio Silva
Daniele Panozzo
Denis Zorin
Joan Bruna
51
80
0
18 Jun 2019
On the Inductive Bias of Neural Tangent Kernels
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
63
257
0
29 May 2019
Learning Shape Templates with Structured Implicit Functions
Learning Shape Templates with Structured Implicit Functions
Kyle Genova
Forrester Cole
Daniel Vlasic
Aaron Sarna
William T. Freeman
Thomas Funkhouser
3DV
71
383
0
12 Apr 2019
How do infinite width bounded norm networks look in function space?
How do infinite width bounded norm networks look in function space?
Pedro H. P. Savarese
Itay Evron
Daniel Soudry
Nathan Srebro
66
165
0
13 Feb 2019
DeepSDF: Learning Continuous Signed Distance Functions for Shape
  Representation
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation
Jeong Joon Park
Peter R. Florence
Julian Straub
Richard Newcombe
S. Lovegrove
3DV
114
3,677
0
16 Jan 2019
On Lazy Training in Differentiable Programming
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
100
833
0
19 Dec 2018
Occupancy Networks: Learning 3D Reconstruction in Function Space
Occupancy Networks: Learning 3D Reconstruction in Function Space
L. Mescheder
Michael Oechsle
Michael Niemeyer
Sebastian Nowozin
Andreas Geiger
3DV
234
2,892
0
10 Dec 2018
Deep Geometric Prior for Surface Reconstruction
Deep Geometric Prior for Surface Reconstruction
Francis Williams
T. Schneider
Claudio Silva
Denis Zorin
Joan Bruna
Daniele Panozzo
3DPC
54
191
0
27 Nov 2018
A Continuous-Time View of Early Stopping for Least Squares
A Continuous-Time View of Early Stopping for Least Squares
Alnur Ali
J. Zico Kolter
Robert Tibshirani
56
97
0
23 Oct 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
224
3,191
0
20 Jun 2018
FALKON: An Optimal Large Scale Kernel Method
FALKON: An Optimal Large Scale Kernel Method
Alessandro Rudi
Luigi Carratino
Lorenzo Rosasco
49
196
0
31 May 2017
ShapeNet: An Information-Rich 3D Model Repository
ShapeNet: An Information-Rich 3D Model Repository
Angel X. Chang
Thomas Funkhouser
Leonidas Guibas
Pat Hanrahan
Qi-Xing Huang
...
Shuran Song
Hao Su
Jianxiong Xiao
L. Yi
Feng Yu
3DV
118
5,508
0
09 Dec 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
270
18,587
0
06 Feb 2015
Breaking the Curse of Dimensionality with Convex Neural Networks
Breaking the Curse of Dimensionality with Convex Neural Networks
Francis R. Bach
156
706
0
30 Dec 2014
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.3K
149,842
0
22 Dec 2014
1